
Electromagnetic Side Channel Information Leakage
Created by Execution of Series of Instructions in a

Computer Processor
Baki Berkay Yilmaz Student Member, IEEE

Milos Prvulovic Senior Member, IEEE, and Alenka Zajić Senior Member, IEEE

Abstract— The side-channel leakage is a consequence of pro-
gram execution in a computer processor, and understanding
relationship between code execution and information leakage
is a necessary step in estimating information leakage and its
capacity limits. This paper proposes a methodology to relate
program execution to electromagnetic side-channel emanations,
and estimates side-channel information capacity created by
execution of series of instructions (e.g. a function, a procedure, or
a program) in a processor. To model dependence among program
instructions in a code, we propose to use Markov Source model,
which includes the dependencies among sequence of instructions
as well as dependencies among instructions as they pass through
a pipeline of the processor. The emitted EM signals during
instruction executions are natural choice for the inputs into the
model. To obtain the channel inputs for the proposed model,
we derive a mathematical relationship between the emanated
instruction signal power (ESP) and total emanated signal power
while running a program. Then, we derive leakage capacity of
electromagnetic (EM) side channels created by execution of series
of instructions in a processor. Finally, we provide experimental
results to demonstrate that leakages could be severe and that a
dedicated attacker could obtain important information.

Index Terms— electromagnetic emanation security, electromag-
netic information leakage, information security, security of mod-
ern processors, TEMPEST, side-channel attack, covert-channel
attack, channel capacity.

I. INTRODUCTION

Vulnerabilities caused by side channels have gained more
attention recently because attackers are getting more sophis-
ticated and can exploit these channels to steal important
information such as cryptokey [1], [2], password [3], or even
key strokes on a laptop [4]. In the literature, many types of
side/covert channel attacks are investigated. Some examples of
these attacks could be related to power variation [5], [6], [7],
[8], [9], [10], [11], [12], [13], temperature analysis [14], [15],
cache-based analysis [16], [17], [18], etc. Detection probability
of these types of attacks is pretty high because all these attacks
require some degree of direct access to the victims’ systems.

This work has been supported, in part, by NSF grant 1563991 and DARPA
LADS contract FA8650-16-C-7620. The views and findings in this paper are
those of the authors and do not necessarily reflect the views of NSF and
DARPA.

Baki Berkay Yilmaz and Alenka Zajić are with the School of Electrical and
Computer Engineering, while Milos Prvulovic is with the School of Computer
Science, Georgia Institute of Technology, Atlanta, GA 30332, USA.

On the other hand, attacks based on emanated EM signals only
require close proximity, i.e. attacks based on power delivery
and computational circuitry of a device [19], [20], [21], [22].
Therefore, detection of EM based side channel attacks is
harder, which makes these attacks more serious side channel
attacks.

Side-channel signals are generated as a side effect of
performing legitimate program activity on a computer system.
Since program activity and the resulting hardware activity are
dependent on data processed by the program, the resulting side
channel signals can (and usually do) carry information about
those data values.

Often asked question is how serious is this type of infor-
mation leakage. Millen was the first to establish a connection
between Shannon’s information theory and information flow
models in computer systems [23], and calculated the capacity
of such a covert channel. However, that model assumes a
synchronous channel, which is not a realistic assumption for
side-channels. In contrast to most communication systems, the
side channel is not designed to transfer information at all,
and its transmission is often corrupted by insertion, deletion
and erroneous transfer of bits. While there is a large number
of papers discussing bounds on the capacity of channels
corrupted with synchronization errors [24], [25], [26], [27],
[28], [29], [30], bounds on the capacity of channels corrupted
with synchronization and substitution errors [31], [32], [33], or
bounds on the capacity when codewords have variable length
but no errors in the channel [31], [34], none of them provides
the answer to how much information is “transmitted” by exe-
cution of particular sequence of instructions that do not have
equal timing and are transmitted through erroneous channel.
The first attempts to answer this question were presented in
[35], [36], where covert channels are generated, and upper
and lower leakage capacities were derived. In [37], a side-
channel leakage capacity is derived for a discrete memoryless
channel where it was assumed that each transmitted quantum
of information (i.e. instruction in the code) is mutually in-
dependent but do not have equal length. Although all these
papers make an important step toward assessing information
leakage from side-channels, they fall short of considering the
relationship among sequence of instructions, which is a result

of program functionality as well as a processor pipeline depth,
which impacts how much signal energy will be emanated.

To address this problem, this paper derives side-channel
information capacity created by execution of series of in-
structions (e.g. a function, a procedure, or a program) in a
processor. To model dependence among program instructions
in a code, we propose to use Markov Source model, which
includes the dependencies that exist in instruction sequence
since each program code is written systematically to perform
a specific task. The sources for channel inputs are considered
as the emitted EM signals during instruction executions. To
obtain the channel inputs for the proposed model, we derive
a mathematical relationship between the emanated instruction
signal power (ESP) as it passes through processor pipeline and
total emanated signal power while running a program. This is
in contrast to work in [37] where all energy emanated through
side-channels is assigned to an instruction, without taking into
account effect of processor pipeline depth, which significantly
impacts the emanated signal. Finally, we provide experimental
results to demonstrate that leakages could be severe and that
a dedicated attacker could obtain important information.

The proposed framework considers processors as the trans-
mitters of a communication system with multiple antennas.
The antennas correspond to different pipeline stages of any
processor. Moreover, inputs of the transmitter show depen-
dency based on a Markov model which reflects the practicality
of a program. Therefore, the goal in this paper is to obtain the
channel capacity of a communication system, or the severity
of the side channels.

The rest of the paper is organized as follows: Section II
reviews capacity of Markov Sources over noisy channels,
defines the proposed leakage capacity, and introduces the
Markov Source model. Section III derives a mathematical
relationship between the emanated instruction power (ESP)
as it passes through processor pipeline and total emanated
signal power while running a program. Section IV provides
experimental results and leakage capacities for various devices.
Finally, Section V provides a recipe for the leakage capacity
calculation, and Section VI concludes the paper.

II. MODELING INFORMATION LEAKAGE FROM A
COMPUTER PROGRAM AS A MARKOV SOURCE OVER A

NOISY CHANNEL

In this section, we propose a Markov source model whose
states are series of instructions in a pipeline. We assume that
channel inputs at each state are the emanated signal powers
produced as combination of different instructions in a pipeline,
and the channel outputs are the noise corrupted versions of the
emitted signals. The reason for considering such a Markov
model is that individual instructions are not independent from
each other in the code as well as that ordering of instructions as
they pass through pipeline significantly impacts emitted signal
patterns.

A. Brief Overview of Markov Model Capacity over Noisy
Channels

Channel capacity provides the limit for a reliable infor-
mation transmission in a communication system. Assuming
Y n1 and Sn1 represent the channel output and state sequences
between t = 1 to t = n, the capacity of the Markov sources
over noisy channels is defined as [38]

C = max
Pij

(i,j)∈T

lim
n→∞

1

n
I (Sn1 ;Y n1 |S0) (1)

where I(•) is the mutual information, Pij is the transition
probability from state i to j, and T is a set of valid state tran-
sitions. To maximize the overall mutual information between
input and output sequences, we need to find the probability
distribution of state transitions under the constraint that state
transitions are only possible if T contains these paths. The
equation given in (1) can be simplified further by using the
chain rule, Markov, and stationary properties of the model. In
[38], it is shown that the capacity can be simplified as

C = max
Pij

∑
i,j:(i,j)∈T

µiPij

[
log

1

Pij
+ Tij

]
. (2)

where

Tij = lim
n→∞

1

n

n∑
t=1

log
Pt(i, j|Y n1)

Pt(i,j|Y n1)

µiPij

Pt(i|Y n1)
Pt(i|Y n1)

µi

 , (3)

and where µi is the stationary probability of state i, which
satisfies µi =

∑
k∈S

µkPki,∀i ∈ S, and S is the set of states. In

this equation, Pt(i|Y n1) is the probability that the state at time
t− 1 is i, and Pt(i, j|Y n1) is the probability that the states at
times t− 1 and t are i and j respectively, given the received
sequence, Y n1 .

There is no closed form solution to the optimization problem
given in (2) because the calculation of Tij is still an open
problem. However, in [38], a greedy algorithm to calculate
C is introduced. Although, the algorithm could not produce
the exact results, the experimental findings show that the
performance gap between the actual results and the algorithm’s
results is small.

In the following sections, we introduce our Markov Source
model, obtain the channel inputs for the proposed model, and
modify the expectation-maximization algorithm given in [38]
to quantify the side-channel information leakage.

B. Proposed Markov Source Model for Modeling Information
Leakage from a Sequence of Instructions

Here, we describe a Markov source model that characterizes
relationship among sequence of instructions as they pass
through pipeline stages in a processor. Note that a processor
pipeline is an assembly line for computing, and contains
groups of activities related to computational tasks, i.e. fetch-
ing, decoding, executing, etc. [39]. We assume that channel
inputs at each state are the emanated signal powers obtained

as a combination of different power levels that instructions
experience as passing through a pipeline, and the channel
outputs are the noise corrupted versions of the emitted signals.
To include the effect of pipeline depth, states are assumed to
be all possible instruction combinations because each stage
performs an operation on the instruction in the queue. For
example, if a pipeline has a depth of m, and the cardinality
of S is q, the number of states will be qm.

DD· · ·DD DD· · ·DD

...
...

MD· · ·DD MD· · ·DD

...
...

SD· · ·DD SD· · ·DD

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

t t+1

PDD···DD,DD···DD

PDD···DD,MD···DD

PDD···DD,SD···DD

...

...

...
q transitions

Time

S
ta
te
s

m

Fig. 1. Markov Source Model for the instruction execution when the pipeline
depth is m, and the cardinality of the considered instruction set is three.

To illustrate how the proposed Markov Model works, Fig. 1
shows an example of Markov Source Model for the instruction
execution when the pipeline depth is m, and the cardinality
of the considered instruction set is three. In the figure, Pi,j
represents the state transition probability from state i to state
j, and circles denote the states of the model. The instruction
set used in the example is {D, S, M}, which corresponds
to division, subtraction, and multiplication, respectively. We
utilize trellis diagram to explain the model explicitly although
transitions are time invariant, i.e. Pi,j does not vary in time.
Moreover, the labels of the states are chosen as the combi-
nation of letters representing the instructions in the pipeline.
Considering these three instructions, one of the states can be
labeled as “DDISDD” where IS is a sequence of instructions
whose length is m−4. Interpretation of the state corresponding
to the label is that instructions in the 1th, 2nd, ..., m−1th and
mth stages of the pipeline are D, D, ..., D, and D, respectively.

For each state, the number of possible paths is q, i.e. it is
equal to the number of instructions in the set. For example, for
the considered example, there exist only three paths from each
state since the instruction set contains only three elements.
For example, the possible states after “DDISDD” could be

“DDDISD”, “MDDISD” or “SDDISD”. Furthermore, we
assume that any instruction can be followed by any other
instruction. This assumption helps the proposed model to be
an indecomposable channel, therefore, the mutual information
definition given in (2) is applicable to the proposed scheme.

We need to note that by considering the Markov source
model, we can successfully capture the pipeline effect because
it puts constraints on the state transitions. Moreover, Pi,j
explains the frequency of the instruction order encountered in
the program. Therefore, the capacity of the proposed model
provides the worst instruction sequence distribution which
leaks information the most.

C. Introducing Information Leakage Capacity for the Pro-
posed Markov Source Model

The capacity definition given in (2) is well suited for
Markov source models if the states take the same amount of
time. In other words, the definition is valid for the models
where the transitions last equal amount of time, and the
transition time is not dependent on a given state. Unfortunately,
applying the same capacity definition to the proposed scheme
is not appropriate because different instructions take different
time to execute. Therefore, we need a capacity definition
which also accounts for instruction execution times. Hence, we
propose a method to quantify the information leakage, which
considers both execution time of each state and the mutual
information between input and output sequences.

Definition Assuming varying execution time of instructions,
maximum possible information leakage through a processor is
defined as

C = max
Pij

(i,j)∈T

lim
n→∞

I (Sn1 ;Y n1 |S0)
n∑
i=1

L(i)
(4)

where L(i) is the length of the state executed at the ith

transition.

Following the analogy between equations (1) and (2), we
can rearrange the equation in (4) as follows

lim
n→∞

I (Sn1 ;Y n1 |S0)
n∑
i=1

L(i)
=

lim
n→∞

1
nI (Sn1 ;Y n1 |S0)

lim
n→∞

1
n

n∑
i=1

L(i)
(5)

=

∑
i,j:(i,j)∈T

µiPij

[
log 1

Pij
+ Tij

]
∑
i∈S

µiLi
(6)

where S is the set containing all existing states, i.e. all
instruction combinations, and Li is the execution length of
the state i. Therefore, our definition can also be written as

C = max
Pij

(i,j)∈T

∑
i,j:(i,j)∈T

µiPij

[
log 1

Pij
+ Tij

]
∑
i∈S

µiLi
. (7)

The result of this optimization provides the possible infor-
mation leakage in bits per smallest number of clock cycles

required to execute a state in S (which we call Bits/Quantum),
not bits per second. The reason is that each instruction takes
at least one clock cycle for any device, but clock frequencies
can vary from one device to another. Since the goal is to
analyze the leakage capacity on instruction level, we provide
our results in Bits/Quantum. Please note here that even the
leakage capacity of a device is small, the number of bits, a
device can transmit in a second, could be large. Therefore,
while examining the vulnerability of any device against side
channel attacks, combining the leakage capacity with clock
frequency leads to the most accurate results.

D. Reducing the Size of the Markov Source Model
The main problem of the proposed Markov source model is

the number of possible states and transitions. As the depth
of the pipeline and the number of considered instructions
increase, the number of states increases exponentially. This
increase causes the iterative algorithm given in [38] to be
more complex. Choosing states as individual instructions will
simplify the proposed scheme. For these states, the channel
input signal is assigned as the emanated EM signal while
executing the corresponding instruction through all pipeline
stages. With this approach, the number of states increases
linearly, not exponentially, as the number of instructions
increases.

D

M

S

PSS

PMM

PDD

PDM

PDS

PSD

PMS

PSM

PMD

1

Fig. 2. Simplified version of Markov Source Model for the instruction
execution when the cardinality of the considered instruction set is three.

In Fig. 2, we provide an example of the state diagram when
the instruction set is {D, M, S}. This model is still inde-
composable based on the assumption that each instruction can
follow any other instruction. Therefore, the capacity definition
given in (6) can be used to calculate leakage capacity limits.
However, this definition also does not have a closed form
solution, and an empirical algorithm similar to expectation-
maximization (ExMa) algorithm in [38] is needed to solve the
problem.

E. An Empirical Algorithm to Evaluate the Leakage Capacity
To utilize the ExMa algorithm, we have to adjust the

proposed model given in the previous section to remove the

execution time of the instructions from the optimization prob-
lem. To achieve this goal, we propose to split the instructions
into unit length sections, i.e., one clock cycle segments, and
treat each of these segments as an individual state. To protect
the overall framework and instruction sequence, we have to
introduce some constraints for possible state transitions.

Let K ∈ S be a state whose length is LK > 1. For the
proposed model, we divide it into LK different states, where
the states are named as Ki where i ∈ {1, · · · , LK}. Each
sub-state is called:

• Initial state if i = 1, i.e. K1,
• Exit state if i = LK , i.e. KLK ,
• Intra-state if i ∈ {2, · · · , LK − 1}

of an instruction K. However, if the length of the instruction K
equals to one, we keep the instruction set unmodified. Note
that the initial and exit states of K will refer to full set K
for the scenario when K takes only one clock cycle. Let SM
and TM be the set of states and state transitions, respectively,
after splitting the states to have a new instruction set whose
members take same amount of time. Therefore, we can rewrite
(6) as

C = max
Pij

(i,j)∈TM

∑
(i,j)∈TM

uiPij
[
log

1

Pij
+ Tij

]
(8)

where Pij refers the modified state transition probabilities,
ui is the stationary distribution of the new states, and Tij
is defined as in (3) in the new model.

Dividing the original states into substates is not enough to
protect the duality between the optimization settings given in
(6) and (8). We also have to make sure that the state transitions
occur in a way that the instruction sequences for both settings
follow the same path. For example, let LK be equal to 2. To
ensure the duality, PK1j must be nonzero only if j is K2.
More formally, to guarantee the duality between the equations
(6) and (8), we employ constraints on transitions which only
allow state transitions in the following scenarios:

R1. An exit state of any instruction to an initial state of any
instruction,

R2. Ki to Ki+1 of instruction K where i ∈ {1, · · · , LK−1}.
Fig. 3 illustrates the proposed framework. This figure is a

transformed version of the Markov source model given in Fig.
2 based on the rules imposed by R1 and R2. We assume that
D and M take four and three times of the execution time of S,
respectively. Here, M1 and D1 are the initial states, M3 and
D4 are the exit states of M and D, respectively. D2 and D3

are the intra-states of DIV, and M2 corresponds the intra-state
of M. Note that these values are chosen arbitrarily, and only
given as an illustration.

By applying the transformations introduced above, we have
removed the problem of variable time of execution per in-
struction. The following theorem proves the models given in
Section II-D and Section II-E are dual, and will lead to the
same capacity results.

D4

D3

D2

D1

SUB M2

M1

M3

PS,S

PD3,D4

PM1,M2

PM2,M3

PM3,M1PD2,D3

PD1,D2

PD4,D1

PD4,M1

PD4,S PS,M1

PS,D1

PM3,D1

PM3,S

1

Fig. 3. Markov Model for the instruction execution as it goes through sub-
states that take equal amount of time.

Theorem 1 (Duality) The optimization settings given in (6)
and (8) are dual problems if the constraints imposed by R1

and R2 are satisfied.

Proof: Please see Appendix I.
Figure 3 illustrates that although we pose some constraints

on the possible state transitions, the state transition diagram
is still indecomposable. Therefore, the capacity definition
and corresponding iterative algorithms given in [38] can be
utilized. However, to apply the algorithm, the channel inputs
have to be known. In the following section, we introduce
a methodology to calculate the channel input power, i.e.,
emitted signal power while processing an instruction through
the pipeline.

III. ESTIMATING CHANNEL INPUT POWER IN THE
PROPOSED MARKOV MODEL

To obtain the channel inputs for the proposed model, in
this section, we derive a mathematical relationship between
the emanated instruction power as it passes through processor
pipeline and total emanated signal power while running a
program. This is in contrast to work in [37] where all energy
emanated through side-channel is assigned to an instruction,
without taking into account effect of processor pipeline, which
significantly impacts the emanated signal. Another advantage
of this approach to calculate emanated energy per instruction
is that capacity can be directly related to signal to noise ratio
(SNR).

A. Definition for Emanated Signal Power (ESP) of Individual
Instructions as They Pass Through Pipeline

In this section, we define Emanated Signal Power (ESP)
which is the channel input power for the proposed Markov
source model.

For activity A1, let assume TA1
is the execution time, TPA1

is
the total time spent in the pipeline except the execution stage,

aA1(t) is the characteristic signal emanated only when A1 is
executed, and aPA1

(t) is the signal emanated as a consequence
of processing the activity throughout the pipeline excluding
the execution stage. We define ESP(A1) as:

ESP(A1) =

∫ TPA1

0 |aPA1
(t)|2dt+

∫ TA1

0
|aA1

(t)|2dt
R

(9)

where we assume the activity A1 stays in the pipeline for the
time interval (0, TA1

+ TPA1
) only once, R is the resistance of

the measuring instrument, and the execution step is the last
step of the pipeline. Here, we need to emphasize that aA1

(t)
and aPA1

(t) are desired signals emanated while processing
activity A1 through the pipeline only. They do not contain any
components from any other signals and interrupts ideally. We
also need to note that although we assume that the execution
of an instruction happens at the very end of the pipeline, it is
only for better illustration of the equation given in (9), and the
execution could be done at any stage of a pipeline. We need
to note that ESP provides the mean available power while
executing an instruction, therefore, we assume that the noise
term comprises all variations in the emanated power.

Although ESP is defined in continuous time domain, we
have to alter this equation to cope with discrete time analysis
since measurements are done on digital devices. Let assume
sampling frequency of the measuring instrument is fs = 1/Ts.
We also assume that the number of samples taken during the
execution of the instruction A1 is NI = TA1

/Ts, and the
number of samples taken, when the instruction A1 is processed
in a pipeline except for execution stage, is PS = TPA1

/Ts.
Then, ESP in discrete time can be written as

ESP[A1] =

PS−1∑
m=0

|aPA1
[m]|2 +

NI−1∑
m=0

|aA1 [m]|2

R/Ts
. (10)

B. Estimating ESP From The Total Emanated EM Signal
Power Created by a Program

Measuring ESP is not a trivial task. Execution of any
instruction is overlapped with execution of other instruction
in the code as well as other activities in the other stages of
the pipeline. Therefore, we need a method to separate signal
components that do not belong to the considered instruction
from the desired signals related to a particular instruction. In
[40], a program is designed to calculate the emanated energy
difference between two instructions.

In this paper, we modify the work in [40] to evaluate energy
emanated by a single instruction. For ease of explanation, we
show the code from [40] in Fig. 4. The code has two inner
for-loops such that the first for-loop repeats the execution of
Activity A, and the second for-loop repeats the execution of
Activity B. Work in [40] shows that given the activities in the
inner for-loops are non-identical, a spectral component at the
alternation frequency, falt = 1/Talt, is generated where Talt
is the one period of outer for-loop.

Instead of inserting two different activities into for-loops of
the code, we insert instruction under observation in the first

1 for(i=0;i<n_out;i++){
2 // Do some instances of the A instruction
3 for(i=0;i<n_inst;i++){
4 ptr1=(ptr1&˜mask1)|((ptr1+offset)&mask1);
5 // The A-instruction, e.g. an add
6 value+=ptr1;
7 }
8 // Do some instances of the B instruction
9 for(i=0;i<n_inst;i++){

10 ptr2=(ptr2&˜mask2)|((ptr2+offset)&mask2);
11 // The B-instruction, e.g. a multiplication
12 value*=ptr2;
13 }
14 }

Fig. 4. The A/B alternation pseudo-code in [40].

for-loop of the code, and NOP instruction into the second
for-loop of the code. We note here that NOP instruction
keeps the processor idle for one clock cycle. Hence, if the
execution time of the activity in the first for-loop takes more
than one clock cycle, the number of NOPs in the second
for-loop has to be chosen carefully so that both loops take
equal amount of time. In other words, the number of iterations
of the first for-loop, n inst, has to be equal to number of
iterations of the second for-loop n inst2=ninst. Here, we
assume the emitted signal power at all stages of a pipeline
for NOP forms the baseline that we use to normalize the
power consumption of other instructions relative to NOP.
Therefore, for the mathematical tractability of the derivations
given in Appendix II, we assume that the signal measured
while execution of NOP is a consequence of additive Gaussian
white noise.

After running the modified code in [40] and measuring
the power at the alternation frequency, the next step is to
derive the relationship between the total emitted power and
ESP. Let s(t) be the emanated signal when the outer loop
iterates for one time. We assume that the frequency content
of s(t) is negligible for the frequencies above fs/2, and lasts
for TE seconds. Therefore, the total number of samples taken
during the experiment is equal to NT = TE/Ts. Let TL be
the execution time of any inner for-loop only for one period.
Then, the number of samples taken in a period can be written
as NL = TL/Ts. Therefore, the relationship between NT and
NL becomes NT = 2× ninst ×NL.

Now, let the power measured around this frequency be
PA1

(falt) while executing the code under the assumptions
stated above. The following theorem gives the relationship
between the total emanated signal power and the instruction
power.

Theorem 2 (ESP) Let PA1
(falt) be the normalized em-

anated power which is defined as

PA1
(falt) = PA1

(falt)− PNOP(falt) (11)

where PNOP(falt) is the measured emanated power when
both for-loops of the code are employed with NOP. The
mathematical relationship between ESP[A1] and PA1

(falt)
while running the activity A1 in the first for-loop can be

written as:

ESP[A1] =
(π

2

)2 PA1
(falt) ·NL

(NI + PS) · falt · ninst
. (12)

Proof: Please see Appendix II.

IV. EXPERIMENTAL RESULTS AND INFORMATION
LEAKAGE ANALYSIS

Fig. 5. Measurement setups used in the experiments.

In this section, we provide the experimental results for em-
anated signal power of each instruction, and evaluate leakage
capacity of various computer platforms.

The experimental setup is shown in Fig. 5. We used a
spectrum analyzer (Agilent MXA N9020A), and magnetic
loop probe (AAronia H field probe PBS-H3) for FPGA board
and a magnetic loop antenna (AOR LA400) for other devices.
We performed our measurements by setting the alternation
frequency, falt, to 80 kHz. We keep the distance as close as
possible to the processor since our goal is to reveal the input
powers of the transmitter, i.e. ESP. The activities used in this
section correspond to x86 instructions given in Fig. 6.

Instruction Description

LDM mov eax,[esi] Load from main memory
STM mov [esi],0xFFFFFFFF Store to main memory
LDL2 mov eax,[esi] Load from L2 cache
STL2 mov [esi],0xFFFFFFFF Store to L2 cache
LDL1 mov eax,[esi] Load from L1 cache
STL1 mov [esi],0xFFFFFFFF Store to L1 cache
ADD add eax,173 Add imm to reg
SUB sub eax,173 Sub imm from reg
MUL imul eax,173 Integer multiplication
DIV idiv eax Integer division
NOP No operation

Fig. 6. x86 instructions for our setup.

To obtain the experimental results, the steps we follow are:

• Run the program given in Fig. 4 as described in Section
III-B to measure the available total signal power at the
alternation frequency.

• Calculate ESP of each instruction for all available devices
based on the equation given in (12).

• Transform the Markov Chain of instructions, and define
the new constraints for the new model in terms of
allowable paths as in Section II-E.

• Define the signal to noise ratio (SNR) as:

SNR =

∑
i∈S

(ESP[i])
2

|S| ×N0/2
(13)

where |S| is the cardinality of instruction set S.
• For a given SNR, run the algorithm given in [38] to

obtain the stationary probabilities of each sub-state and
corresponding leakage capacities.

• If the stationary probability of instructions is required,
solve the following equations

µi = L× ui1, ∀i ∈ S (14)

where µi is the stationary probability of ith instruction
for the original case, and ui1 is the initial sub-state of
ith instruction for the transformed scenario, and L is a
constant which can be written as

L =

(∑
k∈S

uk1

)−1
. (15)

• Define “Quantum” as the ratio between number of re-
quired clock cycles to execute an instruction and min-
imum number of clock cycles to execute at least one
instruction.

Please note that for some experiments, Quantum is equiva-
lent to a clock cycle, but for some experiments, it can corre-
spond to a couple of clock cycles. Additionally, abbreviations
used in this section can be listed as follows:
• CP : Capacity in Bits/Quantum obtained with the pro-

posed scheme.
• C0: Capacity in Bits/Instruction obtained by assuming

execution time of all instruction takes only one clock
cycle and using capacity definition given in (1). We also
assume that the optimal stationary distribution for this
capacity definition is denoted as µ0.

• CN : Capacity in Bits/Quantum which is calculated as

CN =
C0∑

i∈S
µ0[i]Li

. (16)

This capacity definition maps C0 into Bits/Quantum for
a fair comparison.

• C∞: Capacity in Bits/Quantum obtained by setting
SNR =∞ and exploiting the proposed scheme to obtain
the maximum possible leakage.

A. Experimental Results and Leakage Capacity for FPGA

This section presents the experimental results and leakage
capacity for NIOS Processor on DE1 FPGA board. The ESP
and corresponding execution length of each instruction are
provided in Table I. Please note that length of an instruction
means total execution time of each instruction in terms of
Quantum.

In Fig. 7, we plot the leakage capacity for FPGA as a
function of SNR. We observe that C0 exceeds CP because
C0 considers that each instruction takes only one clock cycle.

TABLE I
ESP VALUES (IN zJ) FOR DE1 FPGA BOARD.

LDM LDL1 DIV ADD SUB MUL

ESP 139.38 69.98 87.60 0.32 6.10 55.14
Length 7 4 5 1 1 4

However, if we normalize C0 to obtain CN , we can ob-
serve that applying traditional Shannon theory underestimates
available leakage capacity and that proposed leakage capacity
estimation CP is needed to establish relationship between
sequence of instructions as they pass through pipeline and
leakage capacity.

-10 0 10 20 30

SNR(dB)

0

0.5

1

1.5

2

2.5

B
IT

S 1.157

C
P

C
0

C
N C

Fig. 7. Leakage Capacity for NIOS Processor on the DEI FPGA.

Additionally, we observe that leakage capacity for SNR
= 59.96 dB in [37] is 1.14 Bits/Quantum. Please note that
the method in [37] does not allow for capacity calculation
as a function of SNR. On the other hand, with the proposed
scheme, the estimated leakage capacity is higher and reaches
1.157 Bits/Quantum when SNR is around 30 dB. This result
indicates that considering the pipeline depth and the depen-
dence between instructions, which are not included in [37],
more realistically estimates leakage capacity. We also note
that the leakage capacity is high even for low SNR regimes
allowing for transmission of thousands of bits per second
because the clock frequencies of the current devices are high.
Therefore, software and hardware designers need to consider
side-channels and devise countermeasures to decrease side-
channel leakages as much as possible.

B. Experimental Results and Leakage Capacity for AMD
Turion X2 Laptop

This section provides the leakage capacity for a laptop with
AMD Turion X2. It has 64 KB 2 way L1 Cache and 1024
KB 16 way L2 Cache. ESP values and execution lengths are
given in Table II.

TABLE II
ESP VALUES (IN zJ) FOR AMD TURION X2 LAPTOP.

LDL2 LDM STM STL2 STL1 MUL DIV

ESP 150.08 84.66 64.74 188.17 0.49 0.21 7.26
Length 1 26 30 3 1 1 8

We need to note here that LDL1, ADD, and SUB are not
included into our analysis because ESP values and execu-

tion lengths of these instructions are almost equal to STL1.
Therefore, including these instructions does not affect overall
leakage capacity. However, if we consider STL1, LDL1, ADD,
and SUB as a sub-instruction set whose members are almost
identical, STL1 could be thought as a representative of this
set.

We observe that the deviation of the execution length of
instructions is much larger compared to FPGA. The effect of
having such a deviation can be seen from Fig. 8 where the
gap between C0 and CP is significantly larger. Additionally,
the leakage capacity given in [37] is 0.97 Bits/Quantum when
SNR is 23.78 dB, but the new proposed leakage capacity CP

shows that the leakage can be up to 1.36 Bits/Quantum for
the same SNR region. This result indicates that all signals
emanated from all stages of a pipeline carry some information,
therefore, ignoring these signals can cause underestimation of
the leakages.

-10 0 10 20 30

SNR(dB)

0

0.5

1

1.5

2

2.5

B
IT

S

1.634

C
P

C
0

C
N C

Fig. 8. Leakage Capacity for AMD Turion X2 Laptop.

The results also show that the capacity of the laptop is
moderately high even for low SNR regimes. For example, we
observe that the leakage capacity of this system is approxi-
mately 1 Bits/Quantum around 0 dB SNR. Unfortunately, if the
attacker is in very close proximity, and has the ideal decoder
to reveal the secret information, CP could raise up to 1.634
Bits/Quantum, which corresponds to 1.634*109 bits/second for
a processor with 1 GHz processor clock and all instructions
taking one clock cycle. We also observe that CP could not
achieve the data rate of C∞ in the given SNR regime. For
CP to achieve maximum rate, it requires about 57 dB SNR.
However, for the consistency among figures, we keep the
considered SNR regime same for each plot.

C. Experimental Results and Leakage Capacity for Core 2
DUO Laptop

In this section, we provide the results for Core 2 DUO
laptop. It has 1.8 GHz CPU clock, 32 KB 8 way L1 and 4096
KB 16 way L2 caches. ESP values and lengths of instructions
are given in Table III. Similar to AMD laptop, the deviation
of the instruction length is large, which causes the capacity
gap between the proposed and Shannon based methods to be
larger.

We do not consider the results for STL1, SUB and ADD
because the lengths and ESP values of these instructions are

TABLE III
ESP VALUES (IN zJ) FOR CORE 2 DUO LAPTOP.

STL2 LDM STM LDL2 LDL1 MUL DIV

ESP 422.16 181.58 79.94 320.48 0.75 0.06 7.02
Length 1 26 31 3 1 1 8

almost same with LDL1. For this device, we assume that
LDL1, STL1, SUB and ADD form a sub-instruction set, and
LDL1 as the representative of this set. We observe that CP

can be up to 1.634 Bits/Quantum if the attacker can find a way
to capture emanated signals with high SNR. Furthermore, at
23.82 dB SNR, CP is 1.36 Bits/Quantum, again higher then
1.09 Bits/Quantum capacity predicted in [37]. The difference
between these results reveals the importance of considering
both pipeline depth and ordering of instructions.

-10 0 10 20 30

SNR(dB)

0

0.5

1

1.5

2

2.5

B
IT

S

1.634

C
P

C
0

C
N C

Fig. 9. Leakage Capacity for Core 2 DUO Laptop

We also observe that the required SNR for CP to achieve
C∞ must be at least 56 dB. However, with a moderate
gain antenna and proximity to the laptop, the attacker can
steal sensitive information since the leakage capacity is 0.5
Bits/Quantum when SNR is around -10dB. Considering the
clock frequency of the computer, the side channel can have a
transmission rate of thousand of bits per second under ideal
circumstances.

D. Experimental Results and Leakage Capacity for Core I7
Laptop

The last example we provide is for Core I7 laptop which
has 3.4 GHz CPU clock with 64 KB 2 way L1 Data and 1024
KB 16 way L2 caches. Table IV provides ESP and execution
length of each instruction. The first observation here is that
the deviation of the execution length of instructions is not as
large as the other laptops, which causes the gap between CP

and C0 results to decrease as given in Fig. 10.

TABLE IV
ESP VALUES (IN aJ) FOR CORE I7 LAPTOP.

LDL2 LDM STM STL2 SUB STL1 ADD MUL DIV

ESP 1.03 1.38 1.23 0.56 0.05 0.09 0.08 0.06 0.54
Length 1 12 15 4 1 1 1 1 8

We observe that LDL1 and SUB have approximately same
ESP. Therefore, SUB is considered as the representative of
the group of these instructions. For ideal scenarios, CP

can go up to 2.32 Bits/Quantum. To achieve this rate, the
setup must ensure at least 47 dB SNR. In addition, when
SNR is 23.84 dB, the leakage capacity with the model in
[37] is 0.72 Bits/Quantum, although it is obtained as 1.65
Bits/Quantum with the proposed model. Hence, including both
pipeline depth and dependencies between instructions helps
better quantification of leakage capacity.

-10 0 10 20 30

SNR(dB)

0

1

2

3

B
IT

S 2.32

C
P

C
0

C
N C

Fig. 10. Leakage Capacity for Core I7 Laptop

Also, for the low SNR scenarios,CP is high enough, i.e. 0.7
Bits/Quantum around 0 dB. Considering the clock frequency
of the laptop, the capacity values given in Fig. 10 could be a
messenger to warn any users about the possible vulnerabilities
that computer systems might have.

Another evaluation methodology to assess the severity of
side channels is given in [41]. They define success rate to
demonstrate the performance of an adversary attack. It is pos-
sible to establish a connection between the success rate and the
proposed information leakage. This connection is achieved if
the probabilities which lead to maximum information leakages
are utilized to calculate the success rate. As a simple example,
if the goal of an attack is to reconstruct instructions (although
our paper does not consider a specific attack, but aims to
provide a universal upper bound for EM side channels), we
can define the success rate as

Succsc−ir−1,IAI,ESP
(D, σ) =

∑
i∈I

µ[i]

diU∫
diL

f(x|ESP(i), σ)dx


(17)

where D is the set of decision boundaries for all instructions,
I is the set containing all considered instructions, diU and
diL are the upper and lower decision boundaries for the
ith instruction, f(x|α, σ) is the pdf of white Gaussian noise
distribution with mean α and standard deviation σ, µ[i] is the
stationary probability of ith instruction that is the result of the
optimization problem given in (7). The decision boundaries are
calculated based on ESP values of neighboring instructions.
Therefore, if the target of an attack is known, it is possible to
provide success rate of an attack by exploiting the parameters
which optimize (7).

Welch’s T-test is an evaluation methodology which is
heavily exploited in the security assessment of cryptographic
implementations against side channel attacks [42], [43], [44].
The proposed framework can be also associated with T-test

assessment methodology if we assume there exists an attack
which can separate emitted signals of different pipeline stages,
and depends on the emitted signal power of individual in-
structions when the same instruction is executed successively.
If these assumptions hold, the attacker will receive samples
which will be the noise added version of emitted signal power
while performing activity i, i.e, yij = ESP(i) + noise, where
yij denotes the jth successive execution of the instruction i.
Let yi be

yi =
[
yi1 y

i
2 · · · yiNi

]
where Ni is the number of successive execution of the
instruction i. Let also ∆m,n be the T statistic of instruction
m and n, which is given as

∆m,n =
E (ym)− E (yn)√
var(ym)
Nm

+ var(yn)
Nn

(18)

where E(•) is the expectation operation, and var(•) gives the
variance of its input. The T statistic for the instruction m will
be significant only if ∆m,n is above a threshold for any n ∈ I.
Therefore, the T statistic could be an empirical methodology,
which can provide required repetition of an instruction for a
successful side channel attack.

V. UTILIZING THE PROPOSED FRAMEWORK FOR
SECURITY ASSESSMENT

The leakage capacity definition given in this paper provides
the maximum leakage amount that any EM side/covert channel
can achieve on a given device. This capacity can help designers
to predict possible vulnerabilities of their products at the
design-stage and provide the opportunity to design counter-
measures, or to redesign their systems to prevent possible
side-channel attacks. Comparing with the evaluation method
based on success rate, which quantifies accurate retrieval rate
of an attack’s target (i.e., secret key bit estimation), leakage
capacity defines the maximum information leakage through
side channels without specifying the attack itself. Therefore,
it provides a universal upper bound for EM side channels.
This section provides a recipe to check whether the considered
system is secure enough against side channel attacks, and
explains steps to justify why they are required. The procedure
for the assessment is given in Fig. 11, and can be explained
as follows:
• The first step is to collect emanated EM signal power

available to an attacker while executing an instruction.
Considering the clock frequency of modern computer
systems, measuring the single instruction power could
be problematic because of synchronization, complex
pipeline structure, etc. To handle these problems, the
designed microbenchmark given in Fig. 4 is run to obtain
both PA1(falt) and PNOP(falt) where Pi(falt) is the
total emanated signal power when instruction i and NOP
are inserted into the first and second inner-for-loops,
respectively.

• The measurements to obtain Pi(falt) are done from
near-field because the goal is to capture all emanated

Run the microbenchmark given in Fig. 4

Measure the emanated EM signal power

Calculate ESP

(Theorem 2)

Generate Markov Source Model

(Section II.E)

Calculate Quantum lengths of instruction

Calculate Leakage Capacity by exploiting

the model, ESP and the algorithm in [39]

Store the leakage capacity

Generate instruction sequence for the

code under test

Calculate transition probabilities of the

sequence

Run the algorithm in [39] to obtain the

mutual information for the code .

Compare with

is relatively small enough thanTrue False

The code is resistant to side channel

attack

Come up with some countermeasures or

revise the design

Fig. 11. The methodology to assess information leakage.

signal as much as possible. This approach helps to have
close empirical results for signal power because actual
emanated instruction power is not available. Then, ESP
of each considered instruction is calculated based on the
formula given in (12).

• Because of the functionality of a program, a script, etc.,
and the complex pipeline structure of modern computer
systems, instructions shows dependency to each other. To
consider the dependency among instructions, a Markov
Model is created as given in Section II.

• The next step is to calculate the limit for information
leakage. To obtain the limit, the algorithm given in [38]
will be exploited. For the algorithm, it is required that
the channel inputs from each source have to last for the
same amount of time. However, instructions can take
different number of clock cycles to execute. Therefore,
the Quantum length of each instruction has to be revealed.
Please note that the Quantum length is defined as the ratio
between actual execution time of an instruction and the
minimum execution time within instruction set.

• After having the execution length and utilizing the duality
given in Theorem 1, the next step is to apply the transfor-
mation in Section II-E. This transformation makes sure
that each channel input takes same amount of time so that
the algorithm given in [38] can be utilized to calculate
the leakage capacity for a targeted SNR regime.

• The result of the algorithm provides the leakage capacity
which is denoted as CP . We use this number later as
the baseline to compare with the leakages of designs
to understand the relative resistance of them against any
possible side channel attack.

• To find the leakage of any code, program, design, etc.,

the number of transitions from ith to jth instructions is
counted. These numbers are normalized to calculate Pij
for the inspected source code.

• Having the state transition probabilities, Pij , our next
goal is to reveal the available mutual information for the
test code. Please note that our goal is to find the mutual
information with the given Pij , therefore, we do not need
to update the state transition probabilities. Hence, we run
the algorithm given in [38] only once without updating
the state transition probabilities. The mutual information
obtained as a result of the algorithm is denoted as MC .

• As the last step, we compare CP with MC . If MC

is much smaller then CP , and very close to zero, the
designer can conclude that the source code is secure.
Otherwise, a new design or some countermeasures, i.e.
shielding, etc., has to be considered. Then, the same
steps given in this section have to be followed again until
achieving MC � CP .

Please note that the procedure given here does not specify the
attack methodology, but provides the worst case scenario for
a victim in terms of information leakage. It is still an ongoing
research to have an attack that achieve the limits given in this
paper. However, designers can utilize the procedure to prevent
any future attacks.

VI. CONCLUSIONS

This paper proposed a methodology to relate program
execution to electromagnetic side-channel emanations and es-
timate side-channel information capacity created by execution
of series of instructions (e.g. a function, a procedure, or
a program) in a processor. To model dependence between
program instructions in a code, we have proposed to use
Markov Source model, which includes the dependencies that
exist in instruction sequence since each program code is
written systematically to perform a specific task. The sources
for channel inputs are considered as the emitted EM signals
during instruction executions. To obtain the channel inputs
for the proposed model, we derive a mathematical relation-
ship between the emanated instruction power (IP) and total
emanated signal power while running a program. Then, we
have derived leakage capacity of electromagnetic (EM) side
channels created by execution of series of instructions in
a processor. Finally, we have provided experimental results
to demonstrate that leakages could be severe enough for a
dedicated attacker to obtain some prominent information.

APPENDIX I
ESTABLISHING THE DUALITY BETWEEN (6) AND (8)

Transforming the optimization problem given in (6) to the
problem given in (8) helps to utilize the ExMa algorithm
presented in [38]. However, the necessary step for that is to
show that the duality holds between (6) and (8).

Let YnM
1 be the adjusted version of Y n1 for the transforma-

tion of the proposed model in Section II-D to the model in
Section II-E where nM is the number of states after dividing
each n state properly. We assume the leakage occurs at the

exit state, and the rest of the states do not emit any signal for
instructions which take more than one clock cycle. Actually,
most accurate approach is to split the available leakage power
to all sub-states. However, we note that for any intra/initial
state, we can write Tij as

Tij = g (Tij) (19)

where g (•) is a function of Tij , and Tij can be written as

Tij = log
Pt(i, j|YnM

1)
Pt(i,j|Y

nM
1)

uiPij

Pt(i|YnM
1)

Pt(i|Y
nM
1)

ui

(20)

=
Pt(i, j|YnM

1)

Pt(i|YnM
1)Pij

log
Pt(i, j|YnM

1)

Pt(i|YnM
1)

. (21)

Applying Bayesian rule, we have

Tij =
Pt(i|YnM

1)Pt(j|i,YnM
1)

Pt(i|YnM
1)Pij

log
Pt(i|YnM

1)Pt(j|i,YnM
1)

Pt(i|YnM
1)

=
Pt(j|i,YnM

1)

Pij
logPt(j|i,YnM

1). (22)

For the intra/initial states, we have

Pt(j|i,YnM
1)

(a)
= Pt(j|i)

(b)
= Pij

where (a) follows that there exists only one path from state i,
where i is an intra/initial state, to any other state independent
of any given sequence, and (b) follows that the transition prob-
ability for the Markov chain provides sufficient information to
describe any transition probability from one state to another
at any given time. Therefore, assigning an arbitrary power
values for these states do not affect the transition probability
at time t given the output sequence. For the tractability of the
mathematical derivations, we assume these states produce no
signal at all. Moreover, for these states, we can simplify (22)
further as

Tij =
Pt(j|i)
Pij

logPt(j|i) =
Pij
Pij

logPij = 0 = Tij (23)

for any j ∈ SM , which means

ui
∑
j∈SM

Tij = 0.

Therefore, given an instruction with an execution time larger
than one, the intra/initial states of this instruction do not
contribute to the equation given in (8) in terms of Tij . As
the second step, we have to check the contribution of these
intra/initial states to the definition of leakage capacity. In that
respect, we have

−ui
∑
j∈SM

Pij logPij = 0

since Pij is equal to zero or one. Therefore, for the intra/initial
states, we have

ui
∑
j∈SM

Pij (Tij − logPij) = 0

which means total contribution is zero if the considered state
is an intra/initial state of an instruction whose execution time
takes more than one clock cycle.

Now, let’s check the values obtained from the exit states.
Here, our analysis is based on the assumption that the leakage
occurs at exit states. To proceed further, we define Tij as

Tij = lim
n→∞

1

n

n∑
t=1

log
Pt(k, l|Y n1)

Pt(k,l|Y n1)

uiPij

Pt(k|Y n1)
Pt(k|Y n1)

ui

 (24)

where i is the exit state of instruction k and j is the
initial state of instruction l. The reason to redefine Tij is
to satisfy the duality between the problems because it is
obvious that Tkl = Tij after redefining Tij . Moreover, the
transition probabilities for an exit state to an initial state are
kept exactly the same with the corresponding instruction to
instruction transition probabilities, i.e. PDIV,SUB = PD4,SUB ,
PMUL,SUB = PM3,SUB , etc. (Here, transitions are based on
Fig. 2 and Fig. 3), to preserve the duality.

Therefore, for the exit state k of instruction i, we can write
the following equality:∑
j∈S

Pij

[
log

1

Pij
+ Tij

]
=
∑
j∈SM

Pkj
[
log

1

Pkj
+ Tkj

]
. (25)

Note that the number of states in the original Markov Model
is the same as the number of exit states in the transformed
Markov Model.

Since the transformed Markov Model is also an indecom-
posable model, it has a stationary distribution which can be
written as

u = uP

where u is the state probabilities, and P is the matrix contain-
ing the state transition probabilities. To derive mathematical
results, we utilize the classical probability constraints. For
that, let ui be the stationary distribution of kth sub-state of
instruction M , and uMk be its mapped version. The constraints
for the transformed model are∑

i

ui =
∑
i,j

uji = 1

and
uji = ujk, ∀i, k ∈ {1, · · · , Lj} and j ∈ S,

i.e., uM1
= uM2

= uMLMUL
. Therefore, we have∑

i∈SM

ui =
∑

i∈E(SM)

LiuiLi = 1 (26)

where E (SM) is the set containing exit states of instructions.
Let us rewrite the capacity definition for the transformed
model as

CT = max
Pij

∑
i,j:(i,j)∈TM

uiPij
[
log

1

Pij
+ Tij

]
(27)

= max
Pij

∑
i,j:(i,j)∈E(TM)

uiPij

[
log

1

Pij
+ Tij

]
(28)

where (28) follows the equality given in (25), and E (TM)
represents the state transition set of all exit states. To proceed
forward, we define

ujLj =
µj∑

k∈S
Lkµk

which obeys the probability constraint that

1 =
∑
i∈SM

ui =
∑

i∈E(SM)

Liui =
∑
j∈S

Lju
j
Lj

(29)

=
∑
j∈S

Ljµj∑
k∈S

Lkµk
=

∑
i∈S

Liµi∑
k∈S

Lkµk
= 1 (30)

where (29) follows the equality given in (26). Therefore, we
have

CT = max
Pij

∑
(i,j)∈TM

uiPij
[
log

1

Pij
+ Tij

]
(31)

= max
Pij

∑
(i,j)∈E(TM)

uiPij
[
log

1

Pij
+ Tij

]
(32)

= max
Pij

∑
(i,j)∈T

µi∑
k∈S

Lkµk
Pij

[
log

1

Pij
+ Tij

]
(33)

= max
Pij

∑
(i,j)∈T

µiPij

[
log 1

Pij
+ Tij

]
∑
k∈S

Lkµk
(34)

where (33) follows the equality given in (25). Since (34) is
exactly same with (6), the proposed transformation preserves
the duality which ends the proof.

APPENDIX II
MATHEMATICAL DERIVATION OF ESP

In this section, we show how ESP is related to the alterna-
tion power at the corresponding frequency. For measurement
and derivation purposes of ESP, the code given in Fig. 4 is
used. Here, we assume that the sampled sequence of s(t) is
s[m], and each sample can be written as s[m] = i[m] +w[m]
where i[m] is the emanated signal sample and w[m] is additive
independent and identically distributed (i.i.d.) white noise with
zero mean and variance σ2

w. We assume that the noise term
contains all disruptive signal powers and their variations.

Let sL1
1 [m] be the sequence corresponding to only one

period of the first for-loop signal, and the length of sL1
1 [m] is

NL. We can decompose sL1
1 [m] into three different sequences.

Assuming the depth of the pipeline is PS , these sequences are:
* The samples of the considered instruction including all

pipeline stages:

aA1 [m] =
[
0, · · · , 0, a1A1

, a2A1
, · · · , apA1

, aA1 [0],

· · · , aA1 [NI − 1], ap+1
A1

, · · · , aPSA1

]
where aiA1

is the ith sample of the emitted signal when
A1 is in a pipeline stage rather than execution.

* The samples of other activities rather than A1 to make the
microbenchmark practical including the pipeline effect:

oL1
[m] = [o[0], o[1], · · · , o[NL − 2], o[NL − 1]] .

Here, we need to note that the samples taken for the first
iteration of the inner for-loop will be different than the
other iterations even for the ideal case due to pipeline
depth. Although it looks like the periodicity is not valid
for oL1

[m], we can able to ignore it thanks to the
assumption that ninst is large.

* Finally, the last sequence compromises all other compo-
nents which are assumed to be Gaussian and given as

wL1 [m] = [w[0], w[1], · · · , w[NL − 1]] .

Combining all these sequences, we have

sL1
1 [m] = aA1

[m] + oL1
[m] + wL1

[m].

Following the same decomposition for the second for-loop
signal, called sL2

2 [n], we have

* oL2 [m] = [o[0], o[1], · · · , o[NL − 2], o[NL − 1]],

* wL2
[m] = [w[0], w[1], · · · , w[NL − 1]],

which leads to

sL2
2 [m] = oL2 [m] + wL2 [m].

Here, we assume that NOP consumes very little energy as
it passes through the stages of a pipeline, which means it
produces a signal whose power is close to zero. Observe
here that since both loops are almost identical except the part
where A1 is inserted, we assume that oL1 [m] and oL2 [m] are
identical to each other, therefore, we refer both sequences
as o[m]. Let p[m] be a square wave with 50% duty cycle
and period of 2NLninst samples, and s[m] be the one period
signal of the outer for-loop. Let also aA1

[m] and o[m] be
generated by concatenating aA1 [m] and oL1 [m] by 2 · ninst
times, respectively. Furthermore, we can simply assume that
the noise components are i.i.d. for both for-loops. Therefore,
we have

s[m] = p[m]aA1
[m] + o[m] + w[m].

The first harmonic of s[m] can be written as

S[1] =

2NLninst−1∑
γ=0

P [1− γ]AA1
[γ]

2NLninst
+ O[1] + W[1]. (35)

We know that O[k] and AA1
[k] have nonzero frequency

components only if k = 2·ninst ·l, ∀l ∈ {0, · · · , NL−1}, and
|P [1]| � |P [1−2ninst]|. Therefore, (35) can be approximately
written as

S[1] ≈ P [1]

2NLninst
AA1

[0] + W[1]. (36)

If we take the magnitude square of both sides, we have

|S[1]|2 =

∣∣∣∣ P [1]

2NLninst
AA1

[0] + W[1]

∣∣∣∣2
=

∣∣∣∣ P [1]

2NLninst
AA1

[0]

∣∣∣∣2 + |W[1]|2

−<e {P [1]AA1
[0]W∗[1]}

NL · ninst
(37)

where (·)∗ is conjugation and <e {·} takes the real part of its
argument. Assuming∣∣∣∣ P [1]

2NLninst
AA1

[0]

∣∣∣∣� <e {P [1]AA1
[0]W∗[1]} ,

the first harmonic of s[m] can be simplified further as

|S[1]|2 ≈
∣∣∣∣ P [1]

2NLninst
AA1

[0]

∣∣∣∣2 + |W[1]|2 . (38)

To proceed further, we need to have the expression for
AA1

[0]. Utilizing the DFS, we have

AA1 [0] =

2NLninst∑
γ=0

aA1 [γ]
(a)
= 2ninst

NL∑
γ=0

aA1 [γ] (39)

where (a) follows the fact that aA1
[m] is periodic with NL

samples. Since, at each period, only NI +PS of aA1
[m] have

nonzero values, and assuming NI + PS is large enough, (39)
can be written as

AA1
[0] = 2(NI + PS)ninstE [aA1

[m]]

= 2(NI + PS)ninstµA1
(40)

Note that exploiting (10), ESP[A1] can also be written as

ESP[A1] =
Ts(NI + PS)

R
E
[
|aA1

[m]|2
]

=
Ts(NI + PS)

R

(
µ2
A1

+ σ2
A1

)
≈ Ts(NI + PS)

R
µ2
A1

(41)

where σA1
is the standard deviation of the samples while an

instruction signal is executed, and (41) follows the assumption
that the variation in measured signal during the execution of
an instruction is much smaller than its mean value. Combining
(40) with (41), we have

ESP[A1] ≈ Ts
4R(NI + PS)n2inst

|AA1 [0]|2. (42)

The final step is to show how ESP[A1] and the alternation
power P(falt) are related to each other. The relation between
the first harmonic of the signal and the power measure through
the spectrum analyzer is given as [45], [46]

P(falt) =
2

R

(|S[1]|
2 ·NL · ninst

)2

. (43)

Let PA1
(falt) be the measured alternation power when A1

is inserted into first for-loop, and the second loop is kept
empty. On the other hand, let P0(falt) be the measured power

when both for-loops are kept empty (Here, we need to remark
that keeping the loops empty means inserting NOP as many
as the total number of clock cycles required to execute A1).
Finally, let PA1

(falt) be the normalized alternation power for
the instruction A1 which is defined as

PA1
(falt) = PA1

(falt)− P0(falt).

The critical observation is that the term related to A1 in (38)
is zero when both for loops are kept empty. Assume SA1

[1]
and S0[1] denote the first harmonics of the signal when 1)
A1 is inserted, and 2) both loops are kept empty, respectively.
Considering this setup, we can write

|SA1
[1]|2 − |S0[1]|2 ≈ 1

π2
|AA1

[0]|2 (44)

where we utilize the approximation that π|P [1]| ≈ 2NLninst.
Exploiting the definition of normalized alternation power, and
employing the equations given in (42), (43), and (44), we can
write

PA1(falt) = PA1(falt)− P0(falt)

=
2/R

(2NLninst)
2

(
|SA1

[1]|2 − |S0[1]|2
)

=
2/R

(2NLninst)
2

1

π2
|AA1 [0]|2

=
ESP[A1]

(πNL)
2

2(NI + PS)

Ts
. (45)

To emphasize the relation between the power at the alter-
nation frequency and ESP, we can write

falt · ninst =
1

2 ·NL · Ts
. (46)

Plugging the equation (46) into (45), we have

PA1
(falt) =

(
2

π

)2
ESP[A1]

NL/(NI + PS)

1

2NLTs

=

(
2

π

)2
ESP[A1]

NL/(NI + PS)
faltninst. (47)

To finalize our proof, we need to keep ESP[A1] alone on
the one side. Therefore, we have

ESP[A1] =
(π

2

)2 PA1(falt) ·NL
(NI + PS) · falt · ninst

(48)

which concludes the proof.

REFERENCES

[1] M. Alam, H. A. Khan, M. Dey, N. Sinha, R. L. Callan, A. G. Zajic,
and M. Prvulovic, “One&done: A single-decryption em-based attack
on openssl’s constant-time blinded RSA,” in 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17,
2018., 2018, pp. 585–602.

[2] M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, and C. Sporleder,
“Acoustic side-channel attacks on printers,” in 19th USENIX Security
Symposium, Washington, DC, USA, August 11-13, 2010, Proceedings,
2010, pp. 307–322.

[3] M. Guri, A. Kachlon, O. Hasson, G. Kedma, Y. Mirsky, and
Y. Elovici, “Gsmem: Data exfiltration from air-gapped computers
over GSM frequencies,” in 24th USENIX Security Symposium
(USENIX Security 15). Washington, D.C.: USENIX Association, 2015,
pp. 849–864. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/guri

[4] A. Zajic and M. Prvulovic, “Experimental demonstration of electromag-
netic information leakage from modern processor-memory systems,” in
IEEE Transactions on Electromagnetic Compatibility, Volume: 56, Issue:
4,, 2014, p. 885893.

[5] A. G. Bayrak, F. Regazzoni, P. Brisk, F.-X. Standaert, and P. Ienne,
“A first step towards automatic application of power analysis counter-
measures,” in Proceedings of the 48th Design Automation Conference
(DAC), 2011.

[6] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound
countermeasures to counteract power-analysis attacks,” in Proceedings
of CRYPTO’99, Springer, Lecture Notes in computer science, 1999, pp.
398–412.

[7] D. Boneh and D. Brumley, “Remote Timing Attacks are Practical,” in
Proceedings of the USENIX Security Symposium, 2003.

[8] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sutter, “Practi-
cal Mitigations for Timing-Based Side-Channel Attacks on Modern x86
Processors,” in Proceedings of the 30th IEEE Symposium on Security
and Privacy, 2009, pp. 45–60.

[9] L. Goubin and J. Patarin, “DES and Differential power analysis (the
”duplication” method),” in Proceedings of Cryptographic Hardware and
Embedded Systems - CHES 1999, 1999, pp. 158–172.

[10] P. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems,” in Proceedings of CRYPTO’96, Springer,
Lecture notes in computer science, 1996, pp. 104–113.

[11] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis: leaking
secrets,” in Proceedings of CRYPTO’99, Springer, Lecture notes in
computer science, 1999, pp. 388–397.

[12] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Power analysis
attacks of modular exponentiation in smart cards,” in Proceedings of
Cryptographic Hardware and Embedded Systems - CHES 1999, 1999,
pp. 144–157.

[13] D. Genkin, I. Pipman, and E. Tromer, “Get your hands off my laptop:
Physical side-channel key-extraction attacks on pcs,” in Cryptographic
Hardware and Embedded Systems - CHES 2014, ser. Lecture Notes
in Computer Science, L. Batina and M. Robshaw, Eds. Springer
Berlin Heidelberg, 2014, vol. 8731, pp. 242–260. [Online]. Available:
http://dx.doi.org/10.1007/978-3-662-44709-3 14

[14] M. Hutter and J.-M. Schmidt, “The temperature side channel and heating
fault attacks,” in Smart Card Research and Advanced Applications,
ser. Lecture Notes in Computer Science, A. Francillon and P. Rohatgi,
Eds. Springer International Publishing, 2014, vol. 8419, pp. 219–235.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-08302-5 15

[15] J. Brouchier, T. Kean, C. Marsh, and D. Naccache, “Temperature
attacks,” Security Privacy, IEEE, vol. 7, no. 2, pp. 79–82, March 2009.

[16] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–bringing access-
based cache attacks on aes to practice,” in Security and Privacy (SP),
2011 IEEE Symposium on. IEEE, 2011, pp. 490–505.

[17] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in ACM SIGARCH Computer Archi-
tecture News, vol. 35, no. 2. ACM, 2007, pp. 494–505.

[18] Y. Tsunoo, E. Tsujihara, K. Minematsu, and H. Miyauchi, “Cryptanal-
ysis of block ciphers implemented on computers with cache,” 01 2002.

[19] J. Quisquater and D. Samyde, “Electromagnetic analysis (EMA): mea-
sures and counter-measures for smart cards,” in Smart Card Program-
ming and Security, International Conference on Research in Smart
Cards, E-smart 2001, Cannes, France, September 19-21, 2001, Pro-
ceedings, 2001, pp. 200–210.

[20] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis:
Concrete results,” in Cryptographic Hardware and Embedded Systems -
CHES 2001, Third International Workshop, Paris, France, May 14-16,
2001, Proceedings, no. Generators, 2001, pp. 251–261.

[21] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM
side-channel(s),” in Cryptographic Hardware and Embedded Systems -
CHES 2002, 4th International Workshop, Redwood Shores, CA, USA,
August 13-15, 2002, Revised Papers, 2002, pp. 29–45.

[22] E. D. Mulder, S. B. Örs, B. Preneel, and I. Verbauwhede, “Differential
power and electromagnetic attacks on a FPGA implementation of elliptic

curve cryptosystems,” Computers & Electrical Engineering, vol. 33, no.
5-6, pp. 367–382, 2007.

[23] J. K. Millen, “Covert channel capacity,” in Security and Privacy, 1987
IEEE Symposium on, April 1987, pp. 60–60.

[24] Z. Wang and R. Lee, “Capacity estimation of non-synchronous covert
channels,” in Distributed Computing Systems Workshops, 2005. 25th
IEEE International Conference on, June 2005, pp. 170–176.

[25] R. J. Anderson and F. A. Petitcolas, “On the limits of steganography,”
IEEE Journal on selected areas in communications, vol. 16, no. 4, pp.
474–481, 1998.

[26] V. Crespi, G. Cybenko, and A. Giani, “Engineering statistical behaviors
for attacking and defending covert channels,” IEEE Journal of Selected
Topics in Signal Processing, vol. 7, no. 1, pp. 124–136, 2013.

[27] M. C. Davey and D. J. MacKay, “Reliable communication over channels
with insertions, deletions, and substitutions,” IEEE Transactions on
Information Theory, vol. 47, no. 2, pp. 687–698, 2001.

[28] R. Venkataramanan, S. Tatikonda, and K. Ramchandran, “Achievable
rates for channels with deletions and insertions,” IEEE Transactions on
Information Theory, vol. 59, no. 11, pp. 6990–7013, 2013.

[29] A. Kirsch and E. Drinea, “Directly lower bounding the information
capacity for channels with iid deletions and duplications,” IEEE Trans-
actions on Information Theory, vol. 56, no. 1, pp. 86–102, 2010.

[30] J. Hu, T. M. Duman, M. F. Erden, and A. Kavcic, “Achievable infor-
mation rates for channels with insertions, deletions, and intersymbol
interference with iid inputs,” IEEE Transactions on Communications,
vol. 58, no. 4, 2010.

[31] S. Verdú and S. Shamai, “Variable-rate channel capacity,” IEEE Trans-
actions on Information Theory, vol. 56, no. 6, pp. 2651–2667, 2010.

[32] M. Rahmati and T. M. Duman, “Bounds on the capacity of random
insertion and deletion-additive noise channels,” IEEE Transactions on
Information Theory, vol. 59, no. 9, pp. 5534–5546, 2013.

[33] H. Mercier, V. Tarokh, and F. Labeau, “Bounds on the capacity of
discrete memoryless channels corrupted by synchronization and substi-
tution errors,” IEEE Transactions on Information Theory, vol. 58, no. 7,
pp. 4306–4330, 2012.

[34] C. E. Shannon, “A mathematical theory of communication,” Bell system
technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[35] B. Yilmaz, A. Zajic, and M. Prvulovic, “Modelling jitter in wireless
channel created by processor-memory activity,” in IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP 2018,
04 2018, pp. 2037–2041.

[36] B. B. Yilmaz, M. Prvulovic, and A. Zajić, “Capacity of deliberate side
channels created by software activities,” in Military Communications
Conference (MILCOM), MILCOM 2018-2018 IEEE. IEEE, 2018.

[37] B. B. Yilmaz, R. Callan, A. Zajic, and M. Prvulovic, “Capacity of the
em covert/side-channel created by the execution of instructions in a
processor,” IEEE Transactions on Information Forensics and Security,
vol. 13, no. 3, pp. 605–620, 2018.

[38] A. Kavcic, “On the capacity of Markov sources over noisy channels,”
in 2009 IEEE Global Telecommunications Conference (GLOBECOM),
vol. 5, 2001, pp. 2997–3001.

[39] D. A. Patterson and J. L. Hennessy, Computer Organization and Design
MIPS Edition: The Hardware/Software Interface. Newnes, 2013.

[40] R. Callan, A. Zajic, and M. Prvulovic, “A Practical Methodology
for Measuring the Side-Channel Signal Available to the Attacker for
Instruction-Level Events,” in Proceedings of the 47th International
Symposium on Microarchitecture (MICRO), 2014.

[41] F.-X. Standaert, T. G. Malkin, and M. Yung, “A unified framework
for the analysis of side-channel key recovery attacks,” in Annual
international conference on the theory and applications of cryptographic
techniques. Springer, 2009, pp. 443–461.

[42] G. Becker, J. Cooper, E. DeMulder, G. Goodwill, J. Jaffe, G. Kenworthy,
T. Kouzminov, A. Leiserson, M. Marson, P. Rohatgi et al., “Test vector
leakage assessment (tvla) methodology in practice,” in International
Cryptographic Module Conference, vol. 1001, 2013, p. 13.

[43] T. Schneider and A. Moradi, “Leakage assessment methodology,” in
International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 2015, pp. 495–513.

[44] F.-X. Standaert, “How (not) to use welch’s t-test in side-channel security
evaluations,” in International Conference on Smart Card Research and
Advanced Applications. Springer, 2018, pp. 65–79.

[45] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
“Numerical recipes in c,” Cambridge University Press, vol. 1, p. 3, 1988.

[46] G. Heinzel, A. Rüdiger, and R. Schilling, “Spectrum and spectral
density estimation by the discrete fourier transform (dft), including a
comprehensive list of window functions and some new at-top windows,”
2002.

Baki B. Yilmaz (S’16) received the B.Sc. and
M.Sc. degrees in Electrical and Electronics Engi-
neering from Koc University, Turkey in 2013 and
2015 respectively. He joined Georgia Institute of
Technology in Fall 2016 and he is currently pur-
suing his PhD in School of Electrical and Computer
Engineering, focusing on quantifying covert/side-
channel information leakage and capacity. Previ-
ously, he worked on channel equalization and sparse
reconstruction. His research interests span areas of
electromagnetic, signal processing and information

theory.

Milos Prvulovic (S’97-M’03-SM’09) received the
B.Sc. degree in electrical engineering from the Uni-
versity of Belgrade in 1998, and the M.Sc. and Ph.D.
degrees in computer science from the University of
Illinois at Urbana-Champaign in 2001 and 2003,
respectively. He is a Professor in the School of Com-
puter Science at the Georgia Institute of Technology,
where he joined in 2003. His research interests are in
computer architecture, especially hardware support
for software monitoring, debugging, and security.

He is a past recipient of the NSF CAREER award,
and a senior member of the ACM, the IEEE, and the IEEE Computer Society.

Alenka Zajic (S’99-M’09-SM’13) received the
B.Sc. and M.Sc. degrees form the School of Electri-
cal Engineering, University of Belgrade, in 2001 and
2003, respectively. She received her Ph.D. degree
in Electrical and Computer Engineering from the
Georgia Institute of Technology in 2008. Currently,
she is an Associate Professor in the School of Elec-
trical and Computer Engineering at Georgia Institute
of Technology. Prior to that, she was a visiting
faculty member in the School of Computer Science
at Georgia Institute of Technology, a post-doctoral

fellow in the Naval Research Laboratory, and a design engineer at Skyworks
Solutions Inc. Her research interests span areas of electromagnetic, wireless
communications, signal processing, and computer engineering.

Dr. Zajić was the recipient of the 2017 NSF CAREER award, 2012
Neal Shepherd Memorial Best Propagation Paper Award, the Best Student
Paper Award at the IEEE International Conference on Communications and
Electronics 2014, the Best Paper Award at the International Conference
on Telecommunications 2008, the Best Student Paper Award at the 2007
Wireless Communications and Networking Conference, and the Dan Noble
Fellowship in 2004, which was awarded by Motorola Inc. and the IEEE
Vehicular Technology Society for quality impact in the area of vehicular
technology. Currently, she is an editor for IEEE Transactions on Wireless
Communications.

