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Abstract: A commercial log-periodic dipole array (LPDA) consists of dipoles that are carried by a transmission line, whose conductors have a square cross section. The LPDA belongs to the class of wire antennas. Numerical models for wire antennas are the most efficient ones. Hence, they are the most convenient tools for antenna design. However, the accuracy of such models is jeopardized due to relatively large dimensions of the transmission line. The paper presents corrections in the wire-antenna model that bypass this problem and increase the quality of numerical results. The paper treats the equivalence between transmission lines whose conductors have a square cross section and lines whose conductors have a circular cross section, with a particular stress on creating wire-antenna models of the lines. Two other important issues are considered: junctions of the dipoles with the transmission line and free ends of the dipole arms.

1. Introduction


In the last two decades, log-periodic dipole arrays (LPDAs) have become the most popular commercial antennas for the reception of TV signals in the VHF and UHF bands in Europe. LPDAs have outnumbered Yagi-Uda antennas owing to their relatively simple construction and good broadband properties. However, Yagi-Uda antennas typically have higher gain (on the order of 14 dBi) compared with LPDAs (8-10 dBi).


An ideal LPDA is shown in Figure 1. It consists of several symmetrical dipoles, whose dimensions (arm lengths, radii, and separations between adjacent dipoles) form a geometric progression. On a logarithmic scale, the structure is, hence, periodic. The dipoles are fed by a balanced line (a two-wire line), whose conductors are twisted to produce a proper phasing of the array. The feeder characteristic impedance is constant and typically about 100 . The antenna terminals are on the right end of the feeder. This antenna can be made very broadband (even several octaves). It has a stable input impedance and radiation pattern, with a moderate and stable gain (7-10 dBi).

[image: image1.wmf]
Figure 1. Ideal LPDA.


The basic parameter that defines the periodicity of the LPDA is denoted by  (). It is the ratio of dimensions of two adjacent dipoles. Typical values of this parameter are in the range 0.9 to 0.95. Smaller values yield smaller gain and shorter overall antenna length. 


To briefly describe principles of operation of the LPDA, let us assume the antenna to operate in the transmitting mode. Let the antenna be fed at its terminals by a sinusoidal generator, whose frequency is in the middle of the band for which the antenna is designed. The generator excites an electromagnetic wave on the feeding line, which travels from right to left in Figure 1. The dipoles that are close to the generator are electrically short, i.e., their arm length is substantially shorter than the wavelength at the operating frequency (). Their resonant frequency is higher than the operating frequency. Referring to Figure 2, their input impedance is high. These dipoles do not load the feeding transmission line and have practically no influence on the wave that travels along the feeder. 
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Figure 2. Input impedance of a dipole (|Z|) as a function of the normalized arm length (l/). 


As the wave on the feeder travels further, the dipole lengths increase. When the arm length becomes close to quarter-wavelength, the dipole input impedance becomes on the order of magnitude of the feeder characteristic impedance. Such dipoles are near resonance. They are excited by the feeder and extract energy. This energy is radiated by the dipoles. The LPDA is designed so that at any frequency within the operating band of the antenna, several adjacent dipoles are excited. The distance between adjacent active dipoles is somewhat shorter than quarter-wavelength. Due to the phase reversal obtained by twisting the feeder, the radiation from the active dipoles is enhanced in the direction towards right in Figure 1, and almost canceled in the direction towards left. The active dipoles, hence, constitute a small linear antenna array.


Past the active group of dipoles, there remains only a small energy of the wave on the feeder, as the dipoles have extracted the bulk energy. Hence, this wave has an insignificant influence on the antenna radiation.


At the low end of the antenna operating band, the active group of dipoles is on the far left in Figure 1. The arm length of the longest dipole is about quarter-wavelength. This dipole is backed by a short-circuited section of the feeder line, whose length is usually in the range 
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 to 

. As the frequency increases, the active group of dipoles moves towards right. At the high end of the operating band, the active group of dipoles is on the far right in Figure 1. Thereby, the arm length of the longest dipole in the group is about quarter-wavelength. Hence, the arm length of the shortest dipole of the LPDA is somewhat shorter than quarter-wavelength at the highest operating frequency.


Professional LPDAs are often built to resemble the ideal LPDA. Such antennas are used in HF broadband communications (3-30 MHz), as well as in higher frequency bands, up to about 10 GHz. They are also often used as a standard part of antenna and EMC/EMI measurement equipment.


Commercial antennas have a simpler construction, as shown in Figure 3. The feeder consists of two sturdy conductors (booms), usually of a square cross section, uniform along the line length. These booms serve as a mechanical support for the dipoles. The dipoles are attached to the booms in an alternative arrangement, to provide proper phasing. The dipoles are made of circular conductors, which are impressed into the booms. The antenna is connected by means of a coaxial line. The characteristic impedance of the coaxial line is 75 . The line runs through one boom. It is introduced at the back of the antenna, at the location where booms are short-circuited. It is interconnected to the two booms at the antenna "nose". 




Figure 3. Commercial UHF LPDA. 


Figure 4 shows typical dimensions of the boom and dipole arms. Figures 5-7 show examples of commercial LPDAs, for VHF, UHF, and combined bands. The single-band antennas are designed following the guidelines for ideal LPDAs. The dual-band antenna is designed as a hybrid between the two single-band antennas. It deliberately has a break in broadband properties in the frequency range not used for TV reception (230-470 MHz) to simplify the construction and reduce the antenna size.



Figure 4. Typical dimensions of the boom and dipoles of commercial LPDAs (in millimeters).
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Figure 5. Example of a VHF antenna (174-230 MHz): (a) sketch, (b) reflection coefficient with respect to 75 , (c) gain in the forward direction, and (d) gain in the backward direction. 
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Figure 6. Example of a UHF antenna (470-860 MHz): (a) sketch, (b) reflection coefficient with respect to 75 , (c) gain in the forward direction, and (d) gain in the backward direction. 
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Figure 7. Example of a combined VHF/UHF antenna: (a) sketch, (b) reflection coefficient with respect to 75 , (c) gain in the forward direction, and (d) gain in the backward direction. 


The LPDA belongs to the class of so-called wire antennas [1]. These are antennas assembled of metallic wires, of circular cross sections. The radius of the cross section is much smaller than the wire length and the wavelength at the operating frequency. Wire antennas constitute the simplest class of antennas. Using various approximations, their numerical analysis is reduced to solving one-dimensional mathematical problems. There exist several efficient programs for computer simulation of wire antennas. Some of them have been developed at the School of Electrical Engineering, University of Belgrade [2, 3, 4]. They belong to the most efficient and accurate programs available. Hence, they have become a standard tool for many research and development engineers worldwide.


The usual procedure for modern antenna design is to perform several iterations on the numerical model, before building a laboratory prototype, or even directly building the actual antenna. The accuracy of the numerical models is such that only minor corrections and adjustments are necessary on the physical antenna. To expedite the computer-aided design, the speed and accuracy of computations are key features demanded from the modeling software.


The commercial LPDA is at the edge of belonging to the class of wire antennas. This is mainly due to relatively large dimensions of the boom cross section (Figure 4). A precise model of this antenna requires careful evaluation of the current distribution over the surface of the boom and dipole arms. Hence, appropriate programs for the analysis of surface (metallic) antennas are required [4]. The corresponding numerical analysis is much slower than the analysis of wire antennas. The ratio in speed is even more than one order of magnitude. Hence, instead of performing one frequency sweep in several seconds or minutes, the surface models require hours. In addition, the user's effort to build the surface model of an LPDA is substantially harder and more time consuming than building a wire model. Hence, on one hand, the wire-antenna model is desirable for its efficacy. On the other hand, the surface model is required to obtain sufficient accuracy of numerical results. Both models are briefly described in Section 2. 


The purpose of this paper is to bridge this gap and exploit benefits of both models. This goal is achieved in two steps. The first step, presented in Section 3, is to establish equivalence between transmission lines with square and circular conductors. A particular attention is paid to developing wire-antenna models. The second step, presented in Section 4, is to include corrections due to the effects of junctions and wire ends into the wire-antenna model. Section 5 presents a numerical example that demonstrates excellent agreement between experimental results and theoretical results obtained from the wire-antenna model.

2. Numerical analysis of antennas


Most antennas are numerically analyzed by solving integral equations, using the method of moments [5]. Exceptions are antennas whose dimensions are extremely large in terms of the wavelength at the operating frequency, which are analyzed using so-called high-frequency techniques. According to the complexity of their analysis, the antennas can be classified into the following three groups:
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wire antennas,

SYMBOL 183 \f "Symbol" \s 10 \h
surface (metallic) antennas, and

SYMBOL 183 \f "Symbol" \s 10 \h
metallo-dielectric antennas.


Wire antennas are made of wire-like conductors: conductor radii are much smaller than their lengths and the wavelength at the operating frequency. Conductors can be perfect electric conductors (PEC), or the wires can be loaded (e.g., resistively or inductively). We consider here only PEC structures. Examples of wire antennas are simple wire dipoles, V-antennas, loops and rhombic antennas used for HF communications, tower broadcast antennas for MF and LF bands, Yagi-Uda antennas and log-periodic dipole arrays used in the HF, VHF, and UHF bands, etc. 


All other structures that are made only of conducting materials, but cannot be regarded as wire antennas, belong to the class of surface (metallic) antennas. Such antennas can be in the form of open PEC surfaces (foils) or closed PEC surfaces (arbitrarily shaped PEC bodies). Examples are horn antennas, reflectors, flat dipoles, electrically thick cylindrical and conical antennas, etc.


Metallo-dielectric antennas are made of conductors and insulators. Examples are printed-circuit antennas and arrays. Their analysis is one of the hardest electromagnetic problems. However, metallo-dielectric antennas are beyond our scope here.


The analysis of wire antennas and the analysis of metallic antennas follow the same general guidelines. The conductors are assumed perfect (which is a reasonable approximation in many practical cases, including LPDAs). Hence, the skin effect is fully pronounced. The antenna currents and charges are localized only on the conductor surface. The basic objective of the numerical analysis is to obtain the distribution of these currents and charges, given the antenna shape and excitation. Once the currents and charges are known, the antenna electrical characteristics (input impedance, radiation pattern, etc.) can be evaluated relatively easily.


The basic steps of the analysis are as follows:
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postulating a boundary condition for the electric field at the conductor surface;

SYMBOL 183 \f "Symbol" \s 10 \h
expressing the electric field in terms of the Lorentz potentials and, hence, in terms of the unknown current distribution;

SYMBOL 183 \f "Symbol" \s 10 \h
forming an integral equation for the current distribution;

SYMBOL 183 \f "Symbol" \s 10 \h
solving the integral equation using the method of moments.


At the surface of the PEC, the following boundary condition is valid for the tangential component of the electric field:




,
(1)

where E is the electric field produced by the antenna currents and charges, and 

 is the impressed electric field, which models the antenna excitation. The electric field E can be expressed in terms of the potentials in several ways, resulting in various integral equations for the antenna analysis. A unified treatment of wire and metallic antennas is usually based on the two-potential equation. For this equation we take 




,
(2)

where A is the magnetic vector-potential, V is the electric scalar-potential, and  is the angular frequency. Referring to Figure 8, these potentials are given by




,
(3)




,
(4)

where r is the position-vector of the field point, r' is the position-vector of the source point, S denotes the antenna surface, 

 is the density of the antenna surface currents, and 

 is the density of the surface charges. The medium is assumed to be a vacuum, of parameters 

 and 

. Green's function for this case is given by




,
(5)

where 

 is the phase coefficient. The surface currents and charges are related by the continuity equation,




.
(6)



Figure 8. Coordinate system for the evaluation of potentials and fields for metallic surfaces. 


From equations (2)-(6), the vector E can be expressed in terms of 

, and the result substituted into equation (1). The boundary condition (1) is valid at any point of the antenna surface, defined by the position-vector r. This equation can be projected to a unit vector, 

, tangential to S, yielding the so-called electric-field integral equation for PEC surfaces,




,
(7)

where 

 denotes differentiation with respect to 

, whereas the differentiation in 

 is performed with respect to r. This is an equation for the unknown surface-current density, 

, which is a function of two local coordinates of a system attached to the surface S. There are, generally, two local components of the vector 

. Consequently, to provide a sufficient number of conditions, two orthogonal vectors 

 are used at any point in (7), resulting in a pair of scalar equations for any r. 


There exist various approaches to solving the integral equation (7) using the method of moments. One of the most efficient techniques [6, 4] is based on approximating the surface-current density by two-dimensional polynomials on bilinear quadrilaterals and applying the Galerkin procedure.


This technique can yield accurate results for the current distribution on complicated surfaces, including an LPDA. However, a precise model of the feeding line and attached dipoles requires a refined approximation for the current distribution all over the structure. This, in turn, requires a substantial user's effort to describe the structure and results in long c.p.u. times required to analyze the whole structure.


Certain simplifications are possible in the analysis of wire antennas. These simplifications reduce the two-dimensional mathematical problem of equation (7) to an one-dimensional problem. For a thin-wire conductor, the vector 

 is practically directed along the wire axis, i.e., the circumferential component is negligibly small. Also, the axial component of 

 is practically uniform around the circumference. As the result, we deal with only one component of this vector, which depends only on one coordinate, i.e., the local coordinate s along the wire axis. This is a good approximation in most cases, except near wire junctions and free ends [1]. 


Another important simplification in the wire-antenna analysis is reducing the surface integral in equation (7) to a line integral. This is done by replacing the condition (1), valid at the antenna surface, by the so-called extended boundary condition, which is a condition postulated at points in the interior of the antenna surface. Hence, in contrast to Figure 8, the field point M is not on the wire surface, but it is located on the wire axis (Figure 9), where we consider only the axial component of the electric field. The wire segment has a cylindrical shape, of a circular cross section, whose radius is R. When we consider the field at the axis of a wire segment, the integration in equations (3) and (4) around the wire circumference is reduced to a multiplication by 

. Hence, the two potentials are evaluated as




,
(8) 




,
(9) 

where L denotes the wire axis, 

 is the wire current, 

 is the per-unit-length charge density, and u is a unit vector tangential to the axis. The continuity equation (6) is replaced by




.
(10)


In equations (8) and (9) the source point (defined by r') is on the wire surface, but its location is not precisely defined, as it can be anywhere on the wire circumference. A simple interpretation of these two equations is that they yield potentials due to a line source (a filamental source) located on an arbitrary generatrix of the cylinder. Further, instead of using Green's function (5), we can artificially move the source point to the wire axis. In other words, 

 now becomes the element of the wire axis, and the vector r' points to this element, as shown by the dotted line in Figure 9. To preserve the correct value of Green's function, 

 in equations (8) and (9) should be replaced by




,
(11)

which is referred to as the thin-wire (reduced) kernel. 


As a further approximation, the thin-wire kernel (11) is applied not only for the evaluation of the self-field of a segment, but also to the field due to any segment. All the approximations involved in the analysis of wire antennas produce an exact result for the electric field on the axis of an isolated cylindrical wire conductor. The error peaks near the wire surface and results in inaccurate modeling of wire junctions and free ends. If the wires are thin, these errors are usually within acceptable limits. For thick conductors, however, the error can be significant and affect the accuracy of computations.


From equations (1), (2), and (8)-(11), the integral equation for the current distribution of wire antennas is obtained in the form




.
(12)

This electric-field integral equation for wires is substantially simpler than (7) because the unknown current distribution in (12) is a scalar function that depends only on one local coordinate. Also, instead of the surface integrals in (7), we now deal with line integrals.



Figure 9. Coordinate system for the evaluation of potentials and fields for wires.


Figure 10(a) shows a detail of a boom and attached dipole arm. In the "exact" numerical model [4], the current distribution is approximated by subdividing the antenna surface into a number of bilinear quadrilateral plates, shown in Figure 10(b). A refined approximation is used near the junction of the boom and the dipole arm, as well as at the free end of the dipole arm. 


In the wire-antenna model [2, 4], shown in Figure 10(c), the boom is a wire of a circular cross section. It is subdivided into two wire segments to enable positioning a junction with the dipole arm. In the junction area, the dipole arm penetrates all the way to the boom axis. Finally, the location of the filamental current and charge in equations (8) and (9) is not clearly defined. All these approximations deteriorate the accuracy of the wire-antenna model. 


However, the analysis of wire antennas runs much faster than the analysis of surface antennas. The objective of this paper is to establish a relation between the surface model of Figure 10(b) (which is assumed close enough to reality) and the wire-antenna model of Figure 10(c), so the results obtained from the two models match well. The solution to the problem is divided into two parts. The first part, described in Section 3, is investigating the equivalence between the transmission line with square conductors and the transmission line with circular conductors. The second part, described in Section 4, is taking into account the effects of the junction and the free end of the dipole arms.

	

(a)
	

(b)
	

(c)


Figure 10. Detail of a boom and attached monopole arm of a commercial LPDA: (a) exact view, (b) plate model, (c) thin-wire model.

3. Equivalence between transmission lines


This section deals with the equivalence between a transmission line whose conductors have a square cross section (which corresponds to the actual transmission line of the commercial LPDA) and a transmission line whose conductors have a circular cross section (which corresponds to the wire-antenna model). Both lines are shown in Figure 11. The equivalence is considered from two aspects. The first one is a rigorous equivalence in terms of the two-dimensional analysis. The second one is in terms of the wire-antenna approximations.

	


(a)
	


(b)


Figure 11. Transmission lines with square and circular cross sections.

3.1. Two-dimensional analysis


The two-dimensional analysis of transmission lines assumes the line infinitely long, of a uniform cross section. The dielectric is homogeneous (a vacuum) and lossless. The conductors are assumed perfect, i.e., lossless. (Neglecting the losses is a good approximation as the line cross section in an LPDA is large and the line length is relatively small.) Under these conditions, the line is assumed to carry TEM waves. 


The two-dimensional analysis of the transmission line can be reduced to an electrostatic analysis [7]. The line characteristic impedance (

) is related to the per-unit-length capacitance (

) as




,
(13)

and the propagation coefficient is




.
(14)


By classical conditions, two  transmission lines are equivalent if they have:
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identical propagation coefficients, and

SYMBOL 183 \f "Symbol" \s 10 \h
identical characteristic impedances.


Since the dielectric for both lines is the same (a vacuum) and the lines are lossless, the propagation coefficients are equal. Hence, the first condition is automatically satisfied. The second condition, for the characteristic impedances, can be satisfied by appropriately selecting the dimensions of the transmission-line cross sections. 


Due to the TEM assumption, the characteristic impedance depends only on the relative dimensions of the line; for example, on 

 for the line with square conductors, and on 

 for the line with circular conductors (Figure 11). Hence, there is no unique line with circular conductors that is equivalent to a given line with square conductors with respect to the characteristic impedance.


In an LPDA, the cross-sectional dimensions of the transmission line are relatively large in terms of the wavelength, as well as with respect to the line length and dipole arm length. Hence, there exists a substantial electromagnetic coupling between any section of the line and its environment (dipoles and neighboring line sections). For our application, we must properly take this coupling into account. Hence, the above classical equivalence conditions are augmented by the condition that the two transmission lines have identical coupling with the environment.


This coupling cannot be defined in a unique way. We adopt the criterion that the two lines, under the same voltage and current, create similar electromagnetic fields in their environments. This equivalence is not possible at points that are extremely close to the transmission line, as the conductors have different shapes. However, we seek for an approximate equivalence, at distances that are on the order of magnitude of the cross-sectional dimensions of the lines (

, viz. 

) and greater. We consider the two-dimensional model of the transmission lines, where the electrostatic tools can be applied to the line analysis. Hence, to ensure the similarity of fields, it is sufficient to require that the two lines, under the same voltages between the conductors, have identical dipole moments. (We assume the line dimensions are already selected so that the characteristic impedances of the lines are equal.)


First, we consider a three-dimensional electrostatic system, which consist of two conductors embedded in a vacuum, charged by opposite charges. The dipole moment for this structure is defined as [8]




,
(15)

where S denotes the conductor surfaces. The electric field of this system can be approximated by the electric field due to a point dipole. The point dipole consists of two opposite point charges, and its moment is also p. The electric field of the dipole is evaluated as




,
(16)

where the potential of the dipole is




,
(17)

r is the position vector of the field point, and r' the position vector of the dipole. The electric field of the point dipole decays as 

. 


For a two-dimensional system that consists of two oppositely charged conductors (such as the transmission lines shown in Figure 11) analog reasoning can be applied [9]. The conductors are approximated by a line dipole. This dipole consists of two infinitely long, parallel, opposite line charges. The per-unit-length moment of the conductors, which is the same as the moment of the equivalent line dipole, is evaluated as




,
(18)

where C denotes the cross-sectional contours of the conductors. The electric field of the dipole is evaluated using equation (16), but the potential is now given by




.
(19)

The electric field of the line dipole decays as 

. This is the rate of decay of both the electric and magnetic fields in the vicinity of any open, straight, and long transmission line. The equivalence of the two lines shown in Figure 11, regarding the fields they produce, can be reduced to postulating their per-unit-length dipole moments to be identical.


The centroid of the charge of one transmission-line conductor is




,
(20)

where 

 is the cross-sectional contour of the conductor. The per-unit-length charge density of the conductor is




.
(21)

If we find the charge centroid for the other transmission-line conductor (

), respecting the condition that the charges are opposite (

), the per-unit length moment of the transmission line can be expressed as 




,
(22)

which is equivalent to equation (18).


To simplify the analysis, instead of the symmetrical transmission lines shown in Figure 11, we consider their asymmetrical counterparts shown in Figure 12. A counterpart consists of one conductor placed above an infinite ground plane. The characteristic impedance of the asymmetrical counterpart is two times smaller than the characteristic impedance of the original line, whereas the propagation coefficients are identical.

	


(a)
	


(b)


Figure 12. Asymmetrical counterparts of the transmission lines shown in Figure 11. 


The equivalence of the two lines shown in Figure 12 is now reduced to the following two conditions.
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For the same conductor potentials, the per-unit-length charges must be identical. This implies identical per-unit-length capacitances, and, hence, identical characteristic impedances.
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When the first condition is fulfilled, the positions of the charge centroids (i.e., their elevations above the ground plane) must be identical. This implies identical per-unit-length dipole moments and, hence, approximately identical fields.


The transmission line with circular conductor can be analyzed analytically. Its per-unit-length capacitance is given by [8]




.
(22)

The elevation of the charge centroid is




.
(23)

The transmission line with square conductor is analyzed numerically, using program [7]. For 

 and 

, the characteristic impedance of the asymmetrical line is close to 

. Hence, the calculations are made for the characteristic impedances in the range from 

 to 

. To check the analysis, the transmission line with circular conductor is also analyzed numerically. The results agree with the analytical formula (22) with an error less than 1%.


The square side is fixed to 

, and the analysis is performed in the following steps:
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for the line with square conductor, a search is made to determine the clearance between the square conductor and the ground plane (H) required to obtain a given characteristic impedance (with an error below 1%);

SYMBOL 183 \f "Symbol" \s 10 \h
for the line with square conductor, the centroid elevation (

) is calculated from the numerically evaluated charge distribution;
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for the line with circular conductor, from equation (22), the ratio 

 is calculated to obtain the given characteristic impedance;
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for the line with circular conductor, from equation (23), the ratio 

 is evaluated;
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from the condition 

, the radius of the circular conductor (r) is calculated.


The results are summarized in Tables 1 and 2, and in Figures 13 and 14. Table 1 presents design data for the line with square conductor, i.e., it gives the clearance as a function of the characteristic impedance. The centroid elevation is also shown. The design data are repeated in Figure 13, along with similar data for the line with circular conductors. Table 2 gives data for the line with circular conductor that is equivalent to the line with square conductor. Figure 14 gives the ratio of the circular conductor radius and the square side.


If one wants to find the transmission line with circular conductor that is equivalent to a given line with square conductor, Figures 13 and 14 can be utilized in the following way. Given a and H, from Figure 13 the characteristic impedance of the line with square conductor should be evaluated. From the same figure, the normalized clearance of the line with circular conductor (

) should be determined, for the same characteristic impedance. Next, from Figure 14, the ratio 

 is obtained, whence r can be calculated. Finally, the ratio 

 is denormalized, determining h.

Table 1. Clearance between square conductor and ground plane (H), and centroid elevation (

), as a function of the characteristic impedance (

), for square side 

.

	

 []
	H [mm]
	

 [mm]

	30
	1.850
	4.220

	35
	2.320
	5.015

	40
	2.847
	5.849

	45
	3.433
	6.723

	50
	4.085
	7.647

	55
	4.808
	8.624

	60
	5.605
	9.660

	65
	6.484
	10.762


Table 2. Radius of circular conductor (r), clearance between the conductor and ground plane (h), and centroid elevation (

), as a function of the characteristic impedance (

), for equivalence with square conductor of side 

.

	

 []
	r [mm]
	h [mm]
	

 [mm]

	30
	8.10
	1.023
	4.218

	35
	8.13
	1.413
	5.015

	40
	8.16
	1.871
	5.849

	45
	8.18
	2.400
	6.723

	50
	8.20
	3.005
	7.648

	55
	8.21
	3.688
	8.622

	60
	8.22
	4.454
	9.656

	65
	8.23
	5.313
	10.764




Figure 13. Clearance between square conductor and ground plane (H) normalized to square side (a) and clearance between circular conductor and ground plane (h) normalized to conductor radius (r), as a function of characteristic impedance (

).



Figure 14. Ratio of circular conductor radius (r) and equivalent square side (a), as a function of characteristic impedance (

).


To verify the results for the coupling between the transmission line and its environment, we consider coupling between two parallel transmission lines. The lines are shown in Figure 15. In the first case, each line consists of a square conductor and a ground plane. In the second case, each line consists of a circular conductor and a ground plane, and it is equivalent to the line with the square conductor. Figure 16 shows the per-unit-length mutual capacitance between the lines, as a function of the distance d between conductor centroids. An excellent agreement between the two sets of results can be observed, even for very small distances d. Note that the two circular conductors touch when 

, whereas the two square conductors touch when 

.

	


(a)
	


(b)


Figure 15. Coupled lines with (a) square conductors and (b) with circular conductors. All dimensions are in millimeters.



Figure 16. Per-unit-length mutual capacitances between transmission lines of Figure 15.

3.2. Antenna analysis


The purpose of this investigation is to compare results of the two-dimensional analysis of transmission lines with the surface-antenna and wire-antenna models shown in Figure 17. Both antenna models are three-dimensional. Hence, a finite-length transmission-line section is considered. The line consists of a conductor above an infinite ground plane. The transmission line is fed at one end by a generator, which is located on one of the short wire sections that model the terminal. The transmission line is terminated at the other end in a resistive load.

	

(a)
	

(b)


Figure 17. (a) Surface-antenna and (b) wire-antenna models of a transmission line.


In the surface-antenna model, the transmission-line conductor has a square cross section. The numerical results for the characteristic obtained using program [4] are compared with the results of the two-dimensional analysis. The characteristic impedance of the line is evaluated in the following way. The terminal resistor is varied until the input impedance to the line, as seen by the generator, becomes practically resistive, frequency independent, and equal to the terminal resistance. In that case, the characteristic impedance of the line is equal to the terminal resistance. In addition, the capacitance is evaluated for an electrically short transmission-line section by removing the terminal resistance and leaving the terminal open-circuited and compared with the two-dimensional results. In both cases, an agreement is observed within 1%.


A similar procedure is carried out for the wire-antenna models in programs [2, 4]. In these models, the line conductor is circular. However, according to Section 2, the current and charge distributions around the circumference of the wire are assumed uniform. They are, approximately, replaced by a line current and charge, whose location cannot be precisely defined. Hence, the wire-antenna model introduces an error in the analysis.


Following a procedure similar as in Section 3.1, graphs are made that enable direct building of wire-antenna models in [2, 4], which accurately represent transmission lines with circular and square conductors. The diagrams in Figures 18 and 19 should be used to build wire-antenna models for lines with circular conductors. The diagrams in Figures 20 and 21 should be used to build wire-antenna models for lines with square conductors. In both cases, for given actual dimensions of the line (with circular, viz. square conductors), the first diagram (Figure 18, viz. 20) should be used to find the radius of the equivalent wire in the wire-antenna model. Thereafter, the second diagram (Figure 19, viz. 21) should be used to find the clearance between the wire in the wire-antenna model and the ground plane.



Figure 18. Equivalence between two-dimensional model of transmission line with circular conductor and wire-antenna models: normalized wire radius (

) for programs AWAS and WIPL, as a function of characteristic impedance (

). Normalization is done with respect to conductor radius in two-dimensional model (r).



Figure 19. Equivalence between two-dimensional model of transmission line with circular conductor and wire-antenna models: normalized clearance between wire and ground plane for two-dimensional model (h) and for programs AWAS and WIPL (

), as a function of characteristic impedance (

). Normalization is done with respect to conductor radius in corresponding model (r, viz. 

). 



Figure 20. Equivalence between two-dimensional model of transmission line with square conductor and wire-antenna models: normalized wire radius for programs AWAS and WIPL (

), as a function of characteristic impedance (

). Normalization is done with respect to square side in two-dimensional model (a).



Figure 21. Equivalence between two-dimensional model of transmission line with square conductor and wire-antenna models: normalized clearance between conductor and ground plane for two-dimensional model (H) and wire and ground plane for programs AWAS and WIPL (

), as a function of characteristic impedance (

). Normalization is done with respect to square side in two-dimensional model (a), viz. wire radius in corresponding model (

). 


The equivalence between the square conductor in the two-dimensional model and the wire-antenna models is also verified by analyzing coupling between pairs of coupled transmission lines, but the results are omitted here.


From Figures 19 and 21 it can be noted that the clearance between the wire and the ground plane in the wire-antenna models becomes zero when the characteristic impedance falls to about 50 . If a symmetrical transmission line is considered, which consists of two parallel wire conductors, then the two conductors almost touch each other when the characteristic impedance falls to about 100 . These impedances are the lower limits for the characteristic impedances that can be directly modeled in wire-antenna programs. Lower characteristic impedances can be modeled by taking several wires interconnected in parallel, instead of one wire. The alternative is to use a periodic capacitive loading of the two-wire lines in [2], possibly in combination with a series inductive loading. This scheme can also be used to model printed-circuit lines [10]. However, treatment of this problem is beyond our scope here.

4. End effect and junction effect


Finding the equivalence between the actual transmission line (with square conductors) and the wire-antenna model solves one part of the problem. This equivalence enables building a model for the booms of the LPDA, i.e., finding the radii and distance between the wires. There are, however, two other important effects that influence the accuracy of the wire-antenna model. Both effects are associated with the discontinuities at the two ends of a dipole arm. 


The first effect is the end effect. At the open end of the arm, the charge density tends to infinity at the wedge. In addition, there are charges distributed on the flat disc (cap) of the arm. In the wire-antenna model neither of these charge distributions is properly modeled. The charge is assumed distributed only along a wire generatrix (but not over the end cap). The charge density is finite going towards the open end due to the nature of the approximation used for currents and the charges in the method of moments. As the result, the arm appears to be somewhat shorter in the wire-antenna model than it is in the reality. By comparing numerical and experimental results, it was found in [1] that the inadequate modeling of the end effect makes the wire appear shorter for about 

 in the wire-antenna model, where R is the wire radius.


The second effect is the junction effect. In the region where the dipole arm is attached to the boom, in the wire-antenna model the arm goes all the way to the axis of the wires that represent the boom. At the junction, the current and charge distributions of the wire-antenna model are crude and geometrically not well defined. In reality, the current and charge distributions in this area are complicated. Hence, it is only the surface-antenna model that can adequately solve the problem. The error introduced in the wire-antenna model depends on the dimensions of both the boom cross section and the arm cross section, and no a priori estimation of the junction effect is available.


To find the discrepancy between the wire-antenna model and the surface-antenna model, two structures are considered. The first one, shown in Figure 22, is a transmission line that consists of a conductor above a ground plane. This is the same structure as shown in Figure 17. To this line a circular wire is attached that is parallel to the ground plane. The dimensions of the square conductor and the wire conductors are the same as the boom, viz. the dipole arm of an LPDA. The circular wire and the ground plane constitute an open-circuited transmission line. The effect of the circular wire on the input impedance is particularly pronounced at the resonance of the open-circuited line, i.e., when the line length is close to quarter-wavelength. This structure is analyzed by the surface-antenna and wire-antenna approaches. By the trial-and-error method, it is found that the two models give very similar scattering parameters of the structure if the circular wire in the wire-antenna model is extended for 2 mm beyond its actual geometrical length, as demonstrated in Figure 23. Approximately, one half of this length correction is due to the end effect (since 

), and the other half is due to the junction effect. 

	[image: image4.wmf]
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Figure 22. Surface-antenna and wire-antenna models of a transmission line above a ground plane, with attached a circular wire parallel to that plane.



Figure 23. Input reflection coefficient (

) of structure shown in Figure 22 obtained by surface-antenna model () and corrected wire-antenna model (‑ ‑). 


The second model is a section of the LPDA, shown in Figure 24. It consists of the two booms and one dipole attached to it. This structure is less sensitive to dipole arm dimensions than the structure shown in Figure 22, as the dipole has a broader resonance than the wire parallel to the ground plane. This is due to the radiation from the dipole, whereas the wire parallel to the ground plane constitutes a resonator with a relatively high quality factor. Similar results are established as before. The dipole arm length is to be extended in the wire-antenna model for 2 mm to obtain a good agreement with the surface-antenna model. 

	

(a)
	

(b)


Figure 24. Surface-antenna and wire-antenna models of two-conductor transmission line, with dipole attached to it.



Figure 25. Input reflection coefficient (

) of structure shown in Figure 24: surface-antenna model () and corrected wire-antenna model  (‑ ‑). 

5. Example


Sections 3 and 4 have established rules for building the wire-antenna model of an LPDA that is expected to match well the real antenna, as well as match the surface-antenna model of the structure. To verify the validity of these rules, the UHF TV LPDA sketched in Figure 3 is considered. The antenna has 16 dipoles. A laboratory prototype of the antenna is measured. The input reflection coefficient with respect to 75  nominal impedance is measured using 50  network analyzer, with a minimum-loss pad inserted to transform between the two nominal impedances. The calibration of the network analyzer is performed at the 75  side of the pad. Therefrom, a commercial 75  coaxial cable, 1 m long, is used to connect to the LPDA "nose". This uncalibrated cable length is corrected only for the insertion loss.


The relative radiation pattern of the antenna is measured in the E-plane of the antenna (the horizontal plane), in laboratory conditions where the reflections form the walls are only partly eliminated by microwave absorbers.


Then the antenna is analyzed using the wire-antenna program [2]. All corrections that are proposed in Sections 3 and 4 are taken into account when building this model. Figure 26 shows the computed and measured results for the input reflection coefficient. The agreement between the two sets of results can be qualified as excellent, because the reflection of the order of -15 dB is very small. The oscillations in the measured results are due to the 75  coaxial cable feeding the antenna. Figure 27 shows the computed and measured results for the radiation pattern of the antenna. In this case the agreement is also excellent.



Figure 26. Input reflection coefficient of UHF TV LPDA sketched in Figure 3.

[image: image5.wmf]20

10

0

10

20

0

30

60

90

120

150

180

210

240

270

300

330

-20

f

 [

o

]

-10

-10

0

0

g

p

/

g

pmax

 [dB]

 Computed

 Measured


Figure 27. Relative radiation pattern of UHF TV LPDA sketched in Figure 3.

6. Conclusion


Presented results enable building accurate wire-antenna models for the analysis of commercial log-periodic dipole arrays. Rules are set for approximating a two-conductor transmission line with square conductors by circular wires in the wire-antenna model. They take into account the characteristic impedance of the line and coupling with its environment. Corrections are also established for the arm length of the dipoles, which take into account the junction and end effects. 


Using wire-antenna models is desirable to achieve fast computations, which enables an efficient interactive optimization of the antenna and a successful design. From our experience, the laboratory prototype of the antenna practically does not require any fine tuning, as its electrical properties almost perfectly match the computed values.
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